• Title/Summary/Keyword: short term neural network

Search Result 395, Processing Time 0.028 seconds

Study on the Prediction of Motion Response of Fishing Vessels using Recurrent Neural Networks (순환 신경망 모델을 이용한 소형어선의 운동응답 예측 연구)

  • Janghoon Seo;Dong-Woo Park;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 2023
  • In the present study, a deep learning model was established to predict the motion response of small fishing vessels. Hydrodynamic performances were evaluated for two small fishing vessels for the dataset of deep learning model. The deep learning model of the Long Short-Term Memory (LSTM) which is one of the recurrent neural network was utilized. The input data of LSTM model consisted of time series of six(6) degrees of freedom motions and wave height and the output label was selected as the time series data of six(6) degrees of freedom motions. The hyperparameter and input window length studies were performed to optimize LSTM model. The time series motion response according to different wave direction was predicted by establised LSTM. The predicted time series motion response showed good overall agreement with the analysis results. As the length of the time series increased, differences between the predicted values and analysis results were increased, which is due to the reduced influence of long-term data in the training process. The overall error of the predicted data indicated that more than 85% of the data showed an error within 10%. The established LSTM model is expected to be utilized in monitoring and alarm systems for small fishing vessels.

Short-term Power Consumption Forecasting Based on IoT Power Meter with LSTM and GRU Deep Learning (LSTM과 GRU 딥러닝 IoT 파워미터 기반의 단기 전력사용량 예측)

  • Lee, Seon-Min;Sun, Young-Ghyu;Lee, Jiyoung;Lee, Donggu;Cho, Eun-Il;Park, Dae-Hyun;Kim, Yong-Bum;Sim, Isaac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.79-85
    • /
    • 2019
  • In this paper, we propose a short-term power forecasting method by applying Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network to Internet of Things (IoT) power meter. We analyze performance based on real power consumption data of households. Mean absolute error (MAE), mean absolute percentage error (MAPE), mean percentage error (MPE), mean squared error (MSE), and root mean squared error (RMSE) are used as performance evaluation indexes. The experimental results show that the GRU-based model improves the performance by 4.52% in the MAPE and 5.59% in the MPE compared to the LSTM-based model.

Short-Term Load Prediction Using Artificial Neural Network Models (인공신경망을 이용한 건물의 단기 부하 예측 모델)

  • Jeon, Byung Ki;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.497-503
    • /
    • 2017
  • In recent years, studies on the prediction of building load using Artificial Neural Network (ANN) models have been actively conducted in the field of building energy In general, building loads predicted by ANN models show a sharp deviation unless large data sets are used for learning. On the other hands, some of the input data are hard to be acquired by common measuring devices. In this work, we estimate daily building loads with a limited number of input data and fewer pastdatasets (3 to 10 days). The proposed model with fewer input data gave satisfactory results as regards to the ASHRAE Guide Line showing 21% in CVRMSE and -3.23% in MBE. However, the level of accuracy cannot be enhanced since data used for learning are insufficient and the typical ANN models cannot account for thermal capacity effects of the building. An attempt proposed in this work is that learning procersses are sequenced frequrently and past data are accumulated for performance improvement. As a result, the model met the guidelines provided by ASHRAE, DOE, and IPMVP with by 17%, -1.4% in CVRMSE and MBE, respectively.

Very short-term rainfall prediction based on radar image learning using deep neural network (심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측)

  • Yoon, Seongsim;Park, Heeseong;Shin, Hongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1159-1172
    • /
    • 2020
  • This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.

Predicting Stock Prices Based on Online News Content and Technical Indicators by Combinatorial Analysis Using CNN and LSTM with Self-attention

  • Sang Hyung Jung;Gyo Jung Gu;Dongsung Kim;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.30 no.4
    • /
    • pp.719-740
    • /
    • 2020
  • The stock market changes continuously as new information emerges, affecting the judgments of investors. Online news articles are valued as a traditional window to inform investors about various information that affects the stock market. This paper proposed new ways to utilize online news articles with technical indicators. The suggested hybrid model consists of three models. First, a self-attention-based convolutional neural network (CNN) model, considered to be better in interpreting the semantics of long texts, uses news content as inputs. Second, a self-attention-based, bi-long short-term memory (bi-LSTM) neural network model for short texts utilizes news titles as inputs. Third, a bi-LSTM model, considered to be better in analyzing context information and time-series models, uses 19 technical indicators as inputs. We used news articles from the previous day and technical indicators from the past seven days to predict the share price of the next day. An experiment was performed with Korean stock market data and news articles from 33 top companies over three years. Through this experiment, our proposed model showed better performance than previous approaches, which have mainly focused on news titles. This paper demonstrated that news titles and content should be treated in different ways for superior stock price prediction.

Forecasting River Water Levels in the Bac Hung Hai Irrigation System of Vietnam Using an Artificial Neural Network Model

  • Hung Viet Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.37-37
    • /
    • 2023
  • There is currently a high-accuracy modern forecasting method that uses machine learning algorithms or artificial neural network models to forecast river water levels or flowrate. As a result, this study aims to develop a mathematical model based on artificial neural networks to effectively forecast river water levels upstream of Tranh Culvert in North Vietnam's Bac Hung Hai irrigation system. The mathematical model was thoroughly studied and evaluated by using hydrological data from six gauge stations over a period of twenty-two years between 2000 and 2022. Furthermore, the results of the developed model were also compared to those of the long-short-term memory neural networks model. This study performs four predictions, with a forecast time ranging from 6 to 24 hours and a time step of 6 hours. To validate and test the model's performance, the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and root mean squared error were calculated. During the testing phase, the NSE of the model varies from 0.981 to 0.879, corresponding to forecast cases from one to four time steps ahead. The forecast results from the model are very reasonable, indicating that the model performed excellently. Therefore, the proposed model can be used to forecast water levels in North Vietnam's irrigation system or rivers impacted by tides.

  • PDF

Machine Learning Based Failure Prognostics of Aluminum Electrolytic Capacitors (머신러닝을 이용한 알루미늄 전해 커패시터 고장예지)

  • Park, Jeong-Hyun;Seok, Jong-Hoon;Cheon, Kang-Min;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.94-101
    • /
    • 2020
  • In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.

Price Forecasting on a Large Scale Data Set using Time Series and Neural Network Models

  • Preetha, KG;Remesh Babu, KR;Sangeetha, U;Thomas, Rinta Susan;Saigopika, Saigopika;Walter, Shalon;Thomas, Swapna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3923-3942
    • /
    • 2022
  • Environment, price, regulation, and other factors influence the price of agricultural products, which is a social signal of product supply and demand. The price of many agricultural products fluctuates greatly due to the asymmetry between production and marketing details. Horticultural goods are particularly price sensitive because they cannot be stored for long periods of time. It is very important and helpful to forecast the price of horticultural products which is crucial in designing a cropping plan. The proposed method guides the farmers in agricultural product production and harvesting plans. Farmers can benefit from long-term forecasting since it helps them plan their planting and harvesting schedules. Customers can also profit from daily average price estimates for the short term. This paper study the time series models such as ARIMA, SARIMA, and neural network models such as BPN, LSTM and are used for wheat cost prediction in India. A large scale available data set is collected and tested. The results shows that since ARIMA and SARIMA models are well suited for small-scale, continuous, and periodic data, the BPN and LSTM provide more accurate and faster results for predicting well weekly and monthly trends of price fluctuation.

Drought Forecasting Using the Multi Layer Perceptron (MLP) Artificial Neural Network Model (다층 퍼셉트론 인공신경망 모형을 이용한 가뭄예측)

  • Lee, Joo-Heon;Kim, Jong-Suk;Jang, Ho-Won;Lee, Jang-Choon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1249-1263
    • /
    • 2013
  • In order to minimize the damages caused by long-term drought, appropriate drought management plans of the basin should be established with the drought forecasting technology. Further, in order to build reasonable adaptive measurement for future drought, the duration and severity of drought must be predicted quantitatively in advance. Thus, this study, attempts to forecast drought in Korea by using an Artificial Neural Network Model, and drought index, which are the representative statistical approach most frequently used for hydrological time series forecasting. SPI (Standardized Precipitation Index) for major weather stations in Korea, estimated using observed historical precipitation, was used as input variables to the MLP (Multi Layer Perceptron) Neural Network model. Data set from 1976 to 2000 was selected as the training period for the parameter calibration and data from 2001 to 2010 was set as the validation period for the drought forecast. The optimal model for drought forecast determined by training process was applied to drought forecast using SPI (3), SPI (6) and SPI (12) over different forecasting lead time (1 to 6 months). Drought forecast with SPI (3) shows good result only in case of 1 month forecast lead time, SPI (6) shows good accordance with observed data for 1-3 months forecast lead time and SPI (12) shows relatively good results in case of up to 1~5 months forecast lead time. The analysis of this study shows that SPI (3) can be used for only 1-month short-term drought forecast. SPI (6) and SPI (12) have advantage over long-term drought forecast for 3~5 months lead time.

AI based complex sensor application study for energy management in WTP (정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구)

  • Hong, Sung-Taek;An, Sang-Byung;Kim, Kuk-Il;Sung, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.322-323
    • /
    • 2022
  • The most necessary thing for the optimal operation of a water purification plant is to accurately predict the pattern and amount of tap water used by consumers. The required amount of tap water should be delivered to the drain using a pump and stored, and the required flow rate should be supplied in a timely manner using the minimum amount of electrical energy. The short-term demand forecasting required from the point of view of energy optimization operation among water purification plant volume predictions has been made in consideration of seasons, major periods, and regional characteristics using time series analysis, regression analysis, and neural network algorithms. In this paper, we analyzed energy management methods through AI-based complex sensor applicability analysis such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units), which are types of cyclic neural networks.

  • PDF