• Title/Summary/Keyword: short term neural network

Search Result 395, Processing Time 0.032 seconds

Product Planning using Sentiment Analysis Technique Based on CNN-LSTM Model (CNN-LSTM 모델 기반의 감성분석을 이용한 상품기획 모델)

  • Kim, Do-Yeon;Jung, Jin-Young;Park, Won-Cheol;Park, Koo-Rack
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.427-428
    • /
    • 2021
  • 정보통신기술의 발달로 전자상거래의 증가와 소비자들의 제품에 대한 경험과 지식의 공유가 활발하게 진행됨에 따라 소비자는 제품을 구매하기 위한 자료수집, 활용을 진행하고 있다. 따라서 기업은 다양한 기능들을 반영한 제품이 치열하게 경쟁하고 있는 현 시장에서 우위를 점하고자 소비자 리뷰를 분석하여 소비자의 정확한 소비자의 요구사항을 분석하여 제품기획 프로세스에 반영하고자 텍스트마이닝(Text Mining) 기술과 딥러닝(Deep Learning) 기술을 통한 연구가 이루어지고 있다. 본 논문의 기초자료가 되는 데이터셋은 포털사이트의 구매사이트와 오픈마켓 사이트의 소비자 리뷰를 웹크롤링하고 자연어처리하여 진행한다. 감성분석은 딥러닝기술 중 CNN(Convolutional Neural Network), LSTM(Long Short Term Memory) 조합의 모델을 구현한다. 이는 딥러닝을 이용한 제품기획 프로세스로 소비자 요구사항 반영, 경제적인 측면, 제품기획 시간단축 등 긍정적인 영향을 미칠 것으로 기대한다.

  • PDF

Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning (타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측)

  • S. Cheon;J. Yu;S.H. Lee;M.-S. Lee;T.-S. Jun;T. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

DR-LSTM: Dimension reduction based deep learning approach to predict stock price

  • Ah-ram Lee;Jae Youn Ahn;Ji Eun Choi;Kyongwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.213-234
    • /
    • 2024
  • In recent decades, increasing research attention has been directed toward predicting the price of stocks in financial markets using deep learning methods. For instance, recurrent neural network (RNN) is known to be competitive for datasets with time-series data. Long short term memory (LSTM) further improves RNN by providing an alternative approach to the gradient loss problem. LSTM has its own advantage in predictive accuracy by retaining memory for a longer time. In this paper, we combine both supervised and unsupervised dimension reduction methods with LSTM to enhance the forecasting performance and refer to this as a dimension reduction based LSTM (DR-LSTM) approach. For a supervised dimension reduction method, we use methods such as sliced inverse regression (SIR), sparse SIR, and kernel SIR. Furthermore, principal component analysis (PCA), sparse PCA, and kernel PCA are used as unsupervised dimension reduction methods. Using datasets of real stock market index (S&P 500, STOXX Europe 600, and KOSPI), we present a comparative study on predictive accuracy between six DR-LSTM methods and time series modeling.

Unraveling Emotions in Speech: Deep Neural Networks for Emotion Recognition (음성을 통한 감정 해석: 감정 인식을 위한 딥 뉴럴 네트워크 예비 연구)

  • Edward Dwijayanto Cahyadi;Mi-Hwa Song
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.411-412
    • /
    • 2023
  • Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing SER, we can get numerous benefits. By using a convolutional neural network and Long Short Term Memory (LSTM ) method as a part of Artificial intelligence, the SER system can be built.

Study on Fast-Changing Mixed-Modulation Recognition Based on Neural Network Algorithms

  • Jing, Qingfeng;Wang, Huaxia;Yang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4664-4681
    • /
    • 2020
  • Modulation recognition (MR) plays a key role in cognitive radar, cognitive radio, and some other civilian and military fields. While existing methods can identify the signal modulation type by extracting the signal characteristics, the quality of feature extraction has a serious impact on the recognition results. In this paper, an end-to-end MR method based on long short-term memory (LSTM) and the gated recurrent unit (GRU) is put forward, which can directly predict the modulation type from a sampled signal. Additionally, the sliding window method is applied to fast-changing mixed-modulation signals for which the signal modulation type changes over time. The recognition accuracy on training datasets in different SNR ranges and the proportion of each modulation method in misclassified samples are analyzed, and it is found to be reasonable to select the evenly-distributed and full range of SNR data as the training data. With the improvement of the SNR, the recognition accuracy increases rapidly. When the length of the training dataset increases, the neural network recognition effect is better. The loss function value of the neural network decreases with the increase of the training dataset length, and then tends to be stable. Moreover, when the fast-changing period is less than 20ms, the error rate is as high as 50%. As the fast-changing period is increased to 30ms, the error rates of the GRU and LSTM neural networks are less than 5%.

A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets

  • Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.115-129
    • /
    • 2022
  • Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.

Development of a Prediction Model of Solar Irradiances Using LSTM for Use in Building Predictive Control (건물 예측 제어용 LSTM 기반 일사 예측 모델)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.41-52
    • /
    • 2019
  • The purpose of the work is to develop a simple solar irradiance prediction model using a deep learning method, the LSTM (long term short term memory). Other than existing prediction models, the proposed one uses only the cloudiness among the information forecasted from the national meterological forecast center. The future cloudiness is generally announced with four categories and for three-hour intervals. In this work, a daily irradiance pattern is used as an input vector to the LSTM together with that cloudiness information. The proposed model showed an error of 5% for learning and 30% for prediction. This level of error has lower influence on the load prediction in typical building cases.

Development of Hydrological Variables Forecast Technology Using Machine Learning based Long Short-Term Memory Network (기계학습 기반의 Long Short-Term Memory 네트워크를 활용한 수문인자 예측기술 개발)

  • Kim, Tae-Jeong;Jung, Min-Kyu;Hwang, Kyu-Nam;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.340-340
    • /
    • 2019
  • 지구온난화로 유발되는 기후변동성이 증가함에 따라서 정확한 수문인자의 예측은 전 세계적으로 주요 관심사항이 되고 있다. 최근에는 고성능 컴퓨터 자원의 증가로 수문기상학 연구에서 동일한 학습량에 비하여 정확도의 향상이 뚜렷한 기계학습 구조를 활용하여 위성영상 기반의 대기예측, 태풍위치 추적 및 강수량 예측 등의 연구가 활발하게 진행되고 있다. 본 연구에는 기계학습 중 시계열 분석에 널리 활용되고 있는 순환신경망(Recurrent Neural Network, RNN) 기법의 대표적인 LSTM(Long Short-Term Memory) 네트워크를 이용하여 수문인자를 예측하였다. LSTM 네트워크는 가중치 및 메모리 요소에 대한 추가정보를 셀 상태에 저장하고 시계열의 길이 조정하여 모형의 탄력적 활용이 가능하다. LSTM 네트워크를 이용한 다양한 수문인자 예측결과 RMSE의 개선을 확인하였다. 따라서 본 연구를 통하여 개발된 기계학습을 통한 수문인자 예측기술은 권역별 수계별 홍수 및 가뭄대응 계획을 능동적으로 수립하는데 활용될 것으로 판단된다. 향후 연구에서는 LSTM의 입력영역을 Bayesian 추론기법을 활용하여 구성함으로 학습과정의 불확실성을 정량적으로 제어하고자 한다.

  • PDF

A Survey on Neural Networks Using Memory Component (메모리 요소를 활용한 신경망 연구 동향)

  • Lee, Jihwan;Park, Jinuk;Kim, Jaehyung;Kim, Jaein;Roh, Hongchan;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.8
    • /
    • pp.307-324
    • /
    • 2018
  • Recently, recurrent neural networks have been attracting attention in solving prediction problem of sequential data through structure considering time dependency. However, as the time step of sequential data increases, the problem of the gradient vanishing is occurred. Long short-term memory models have been proposed to solve this problem, but there is a limit to storing a lot of data and preserving it for a long time. Therefore, research on memory-augmented neural network (MANN), which is a learning model using recurrent neural networks and memory elements, has been actively conducted. In this paper, we describe the structure and characteristics of MANN models that emerged as a hot topic in deep learning field and present the latest techniques and future research that utilize MANN.

Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis (풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교)

  • Manh-Tuan Ngo;Changhyun Kim;Minh-Chau Dinh;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.77-87
    • /
    • 2023
  • Wind turbines playing a critical role in renewable energy generation, accurately assessing their operational status is crucial for maximizing energy production and minimizing downtime. This study conducts a comparative analysis of different neural network models for wind turbine condition diagnosis, evaluating their effectiveness using a dataset containing sensor measurements and historical turbine data. The study utilized supervisory control and data acquisition data, collected from 2 MW doubly-fed induction generator-based wind turbine system (Model HQ2000), for the analysis. Various neural network models such as artificial neural network, long short-term memory, and recurrent neural network were built, considering factors like activation function and hidden layers. Symmetric mean absolute percentage error were used to evaluate the performance of the models. Based on the evaluation, conclusions were drawn regarding the relative effectiveness of the neural network models for wind turbine condition diagnosis. The research results guide model selection for wind turbine condition diagnosis, contributing to improved reliability and efficiency through advanced neural network-based techniques and identifying future research directions for further advancements.