• Title/Summary/Keyword: shore hardness

Search Result 62, Processing Time 0.02 seconds

Synthesis, Characterization and Haemocompatibility of Poly(styrene-b-isobutylene-b-styrene) Triblock Copolymers (폴리(스티렌-이소부틸렌-스티렌) 삼중블록 공중합체의 합성, 분석 및 혈액적합성)

  • Ren, Ping;Wu, Yi-Bo;Guo, Wen-Ii;Li, Shu-Xin;Mao, Jing;Xiao, Fei;Li, Kang
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • The synthesis of well-defined poly(styrene-b-isobutylene-b-styrene) (SIBS) triblock copolymers was accomplished by cationic sequential block copolymerization of isobutylene (IB) with styrene (St) using 1,4-di(2-chloro-2-propyl) benzene (DCC) /$TiCl_4$/2,6-di-tert-butylpyridine(DtBP) as an initiating system in methyl chloride ($CH_3Cl$)/methylcyclohexane(MeChx) (50/50 v/v) solvent mixture at $-80^{\circ}C$. The triblock copolymers exhibited excellent thermoplastic and elastomeric characteristics. Tensile strengths and Shore hardness increased with increasing polystyrene (PS) content, while elongation at break decreased. The blood-compatibility of SIBS was assessed by SEM observation of the platelet adhesion, blood clotting time and haemolysis ratio. The haemolysis ratios were below 5% which met the medical materials standard. The platelet adhesion test further indicated that SIBS block copolymers had a good blood compatibility.

Morphology and Mechanical Properties of Polyurethane/Organoclay Nanocomposites (폴리우레탄/유기화 점토 나노복합체의 모폴로지와 기계적 물성)

  • Park, Kyu-Nam;Yoon, Kwan-Han;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.224-231
    • /
    • 2007
  • Polyurethane (PU) was prepared with the compositions of polytetramethylene glycol (PTMG) having two different molecular weight (250, 1000 g/mol). The optimum composition of PTMG 250/1000 was 60/40 based on the mechanical properties. PU/organoclay nanocomposites were prepared with several kinds of organoclay. The mechanical properties of nanocomposite prepared with 93A were considerable. The improvement in tensile strength and modulus for PU/organoclay nanocomposite with the application of ultrasound compared to the PU/organoclay nanocomposite without the application of ultrasound was factors of 1.2, and hardness (shore A type) increased from 90 to 95. The difference in thermal degradation was not observed. The results of transmission electron micrographs and X-ray measurements suggest that the intercalated organoclay in PU matrix was observed.

Evaluation on Mechanical Properties with Welding Processes for Off Shore Wind Tower Application (TMCP강을 적용한 해상용 풍력타워의 용접 공정에 따른 기계적 물성 평가)

  • Ji, Changwook;Choi, Chul Young;Nam, Dae-Geun;Kim, Hyoung Chan;Jang, Jae Ho;Kim, Ki Hyuk;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2014
  • FCAW(Flux Cored Arc Welding), SAW(Submerged Arc Welding), EGW(Electro Gas Welding), and three-pole SAW are applicable in manufacturing the offshore wind tower. In this paper, mechanical properties of these welded-joints for TMCP steels were evaluated in all above welding processes. The tensile strength of welded-joints for all the welding methods satisfied the standard guideline (KS D 3515). No cracking on weldment was found after the bending test. Changes of weldedments hardness with welding processes were observed. In a weld HAZ (heat-affected zone), a softened HAZ-zone was formed with high heat input welding processes (SAW and EGW). However, the welded-joint fractures were found in the base metal for all cases and small decrease in welded-joint strength was caused by a softened zone. The multi-pole SAW welds exhibited similar mechanical properties comparing to the one with one-pole SAW process.

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

Preparation and characteristics of a flexible neutron and γ-ray shielding and radiation-resistant material reinforced by benzophenone

  • Gong, Pin;Ni, Minxuan;Chai, Hao;Chen, Feida;Tang, Xiaobin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.470-477
    • /
    • 2018
  • With a highly functional methyl vinyl silicone rubber (VMQ) matrix and filler materials of $B_4C$, PbO, and benzophenone (BP) and through powder surface modification, silicone rubber mixing, and vulcanized molding, a flexible radiation shielding and resistant composite was prepared in the study. The dispersion property of the powder in the matrix filler was improved by powder surface modification. BP was added into the matrix to enhance the radiation resistance performance of the composites. After irradiation, the tensile strength, elongation, and tear strength of the composites decreased, while the Shore hardness of the composites and the crosslinking density of the VMQ matrix increased. Moreover, the composites with BP showed better mechanical properties and smaller crosslinking density than those without BP after irradiation. The initial degradation temperatures of the composites containing BP before and after irradiation were $323.6^{\circ}C$ and $335.3^{\circ}C$, respectively. The transmission of neutrons for a 2-mm thick sample was only 0.12 for an Am-Be neutron source. The transmission of ${\gamma}$-rays with energies of 0.662, 1.173, and 1.332 MeV for 2-cm thick samples were 0.7, 0.782, and 0.795, respectively.

Manufacture of Artificial stone using Wasts Stone and Powder Sludge (폐석 및 석분 슬러지를 활용한 인조석판재의 제조)

  • 손정수;김병규;김치권
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.4-11
    • /
    • 1995
  • The amounts of waste stone and stone powder sludge that occurred in the quarry and processing plant of s stone plates, have been increased with the development of stone industry. The manufactunng process of 따tificial s stone was studied to reduce the outlet of these wastes and utilIze them as raw materials for architecture, interior decoration and art work. In order to compare the properties of artiflcial stone with those of natural building-stone, the physi$\alpha$II properties of artificial stone such as specific gravity, absorption ratio, elastic wave velocity, compressive s strength, tensile strength, shore hardness, elasticity and Poission's ratio were measured. From the mesaured d data of physical properties, it was found that physical propertIes of artificial stone were controlled by homogeneous m mixing ratio of constituents, molding pressure, and amount of binder. Also, from the thermo-gravimetric analysis, it was found that artIfIcial stone manufactured had a good thermal stability up to $300^{\circ}C$. It was concluded that t the optimum conditions for manufacturing process of artificial stone were $200kg/\textrm{cm}^2$ of molding pressure, 12-15 w weight % of binder amounts.

  • PDF

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.

Variations of Geotechnical Characteristics Following Freeze-Thaw of Terra Nova Bay Rocks, Antarctica (남극 테라노바 만 편마암의 동결-융해에 따른 지반공학적 특성 변화)

  • Kim, YoungSeok;Kim, Kiju;Jang, Hyun-Shic;Jang, Bo-An
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1499-1508
    • /
    • 2013
  • Freeze-thaw tests were performed on gneiss samples collected from Terra Nova Bay, Antarctica in order to examine the engineering properties of rocks with slightly weathered (SW) and moderately weathered (MW). The tests were conducted under temperature ranging from $20{\pm}2^{\circ}C$ to $-20{\pm}2^{\circ}C$. A cycle of test consisted of 5 hours of freezing followed by another 5 hours of thawing under full saturation. In this paper, total 200 cycles of freeze-thaw test were performed with measurements of porosity, absorption, ultrasonic velocity, and shore hardness per each 20 cycle and that of uniaxial compressive strength (UCS) per each 50 cycle. The UCS of the SW rocks approximately decreased 0.07 MPa per a single cycle, while that of MW rocks decreased around 0.2 MPa per a single cycle. During the 200 cycles of SW rocks, the absorption increased from 0.23% to 0.39%, the P-wave velocity decreased from 4,054 m/s to 3,227 m/s and S-wave velocity decreased from 2,519 m/s to 2,079 m/s. Similarly, those of MW rocks changed from 0.65% to 1.6%, 3,207 m/s to 2,133 m/s and 2,028 m/s to 1,357 m/s. In conclusion, it was inferred that the properties of SW rocks experienced approximately 200-300 cycles of freeze-thaw process become close to those of MW rocks.

Material Performance Evaluation of PolyUrea for Structural Seismic Retrofitting (구조물 내진 보강용 폴리우레아의 재료 성능 평가)

  • Cho, Chul-Min;Choi, Ji-Hun;Rhee, Seung-Hoon;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.131-139
    • /
    • 2017
  • Recently, earthquakes have frequently occurred near Korean peninsula. An experimental study is needed for developing a reinforcing method for seismic strengthening to apply to RC structures. Recently, PolyUrea (PU) as structural reinforcement materials has been receiving great interest from construction industry. The reinforcing effect of PU appeared to be excellent under blast and impact as well as earthquakes. In this study, Flexible Type PolyUrea (FTPU) developed in preceding studies was modified to develop Stiff Type PolyUrea (STPU) by varying the ratio of the components of prepolymer and hardener of FTPU. The material performance evaluation has been performed through hardening time, tensile strength and percent elongation test, pull-off test, and shore hardness test. The experimental results showed that STPU has higher tensile strength and lower elongation than FTPU. Therefore, STPU coating agent can be used for semi-permanent products. By using STPU with Fiber-Reinforced Polymer (FRP) on concrete columns, confinement effect can be enhanced to maximize seismic strength and ductility.