• 제목/요약/키워드: shop floor control system

검색결과 59건 처리시간 0.031초

Hybrid Shop Floor Control System for Computer Integrated Manufacturing (CIM)

  • Park, Kyung-Hyun;Lee, Seok-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.544-554
    • /
    • 2001
  • A shop floor can be considered as an important level to develop Computer Integrated Manufacturing system (CIMs). However, a shop floor is a dynamic environment where unexpected events continuously occur, and impose changes to the planned activities. To deal with this problem, a shop floor should adopt an appropriate control system that is responsible for the coordination and control of the manufacturing physical flow and information flow. In this paper, a hybrid control system is described with a shop floor activity methodology called Multi-Layered Task Initiation Diagram (MTD). The architecture of the control model contains three levels: i.e., he shop floor controller (SFC), the intelligent agent controller (IAC) and the equipment controller (EC). The methodology behind the development of the control system is an intelligent multi-agent paradigm that enables the shop floor control system to be an independent, an autonomous, and distributed system, and to achieve an adaptability to change of the manufacturing environment.

  • PDF

Multi-factors Bidding method for Job Dispatching in Hybrid Shop Floor Control System

  • Lee, Seok--Hee;Park, Kyung-Hyun;Bae, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.124-131
    • /
    • 2000
  • A shop floor can be considered as and importand level to develop a Computer Integrated Manufacturing system (CIMs). The shop foor is a dynamic environment where unexpected events contrinuously occur, and impose changes to planned activities. The shop floor should adopt an appropriate control system that is responsible for scheduling coordination and moving the manufacturing material and information flow. In this paper, the architecture of the hybrid control model identifies three levels; i.e., the shop floor controller (SFC), the cell controller(CC) and the equipment controller (EC). The methodology for developing these controller is employ an object-oriented approach for static models and IDEF0 for function models for dispatching a job. SFC and CC are coordinated by employing a multi-factors bidding and an adapted Analytic Hierarchy Process(AHP) prove applicability of the suggested method. Test experiment has been conducted by with the shopfloor, consisting of six manufacturing cells.

  • PDF

Simulation for Shop Floor Control

  • Cho, Hyunbo
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1996년도 춘계학술대회
    • /
    • pp.15-15
    • /
    • 1996
  • A shop floor control system (SFCS) is the central part of a CIM system used to control the activities of several pieces of manufacturing equipment (e.g., NC machines, robots, conveyors, AGVs, AS/RS). The SFCS receives orders and related process plans, and then performs selecting a specific process routing, allocating resources, scheduling the workpieces, downloading the processing instructions (e.g., RS-274 instructions for NC machines, VAL II programs for robot), monitoring the progress of activities, detecting and recovering from errors, and preparing reports on the status of the manufacturing system. Simulation has been utilized in discovering control policies used for resolving shop floor be control problems such as resource contentions, part dispatching, deadlock. The simulation model must be designed to respond to real-time data coming from a shop floor. However, to rapidly build a realtime simulation model of SFCS cannot be easily accomplished. This talk is to address an automatic program generator of discrete event simulation model for shop floor control from process plans and resource models. The program generator is capable of constructing complete discrete simulation models for multi-product and multi-stage flexible manufacturing systems.

  • PDF

Shop Floor Control 정보시스템 설계 및 개발 연구 (A Study on the Design and Development of Shop Floor Control Information System)

  • 한성배;조현규;박상봉
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.47-60
    • /
    • 1997
  • Today, more and more information is processed in the shop floor The main function of the shop floor is more enlarged and enriched by the integration of information processing tasks. So, we have designed the shop floor control information system(SFCIS) considered using the IDEF methodology. The SFCIS consists of 5 sub-systems, which are the manufacturing data base, the order release, the dynamic scheduling, the process control, and the output analysis sub-system. And we have constructed the SFCIS for long-cycle products, which have production lead time longer than the period of production planning horizon.

  • PDF

Heterarchical SFCS 를 위한 가공기계의 Planner 모듈 개발 (Development of a planner of processing equipments for heterarchical SFCS)

  • 김화진;조현보;정무영
    • 대한산업공학회지
    • /
    • 제22권4호
    • /
    • pp.719-739
    • /
    • 1996
  • A common control model used to implement computer integrated manufacturing(CIM) is based on the hierarchical decomposition of the shop floor activities, in which supervisory controllers are responsible for all the interactions among subordinates. Although the hierarchical control philosophy provides for easy understanding of complex systems, an emerging manufacturing paradigm, agile manufacturing, requires a new control structure necessary to accommodate the rapid development of a shop floor controller. This is what is called autonomous agent-based heterarchical control. As computing resources and communication network on the shop floor become increasingly intelligent and powerful, the new control architecture is about to come true in a modern CIM system. In this paper, heterarchical control is adopted and investigated, in which a controller for a unit of device performs three main functions - planning, scheduling and execution. Attention is paid to the planning function and all the detailed planning activities for heterarchical shop floor control are identified. Interactions with other functions are also addressed. In general, planning determines tasks to be scheduled in the future. In other words, planning analyzes process plans and transforms process plans into detailed plans adequate for shop floor control. Planning is also responsible for updating a process plan and identifying/resolving replanning activities whether they come from scheduling or execution.

  • PDF

CIM 환경에서의 현장관리시스템 (The Study of Shop Floor Control System Under CIM Environment)

  • 남호기
    • 산업경영시스템학회지
    • /
    • 제21권46호
    • /
    • pp.197-206
    • /
    • 1998
  • In recent years there has been a tremendous upsurge of interest in Shop Floor Control System (SFCS) design and analysis. We reviewed current computer-aided shop floor control system. It is concluded that current methodologies support, in a very restricted sense, these planning, scheduling, and monitoring activities and that enhanced performance can be achieved via an integrated approach. In this paper we present an interdisciplinary approach to the development and installing of sophisticated shop floor control systems. Interdisciplinary design will form the basis of designing SFCS in new knowledge intensive era. Interdisciplinary design means more than just applying knowledge from other domains, such as psychology and organization science to design of SFCS. The interdisciplinary approach is verified by an illustrative case study.

  • PDF

자율적 제조 공정 관리를 위한 인지 에이전트의 개미 군집 지능 (Ant Colony Intelligence in Cognitive Agents for Autonomous Shop Floor Control)

  • 박홍석;박진우
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.760-767
    • /
    • 2011
  • The flexibility and evolvability are critical characteristics of modern manufacturing to adapt to changes from products and disturbances in the shop floor. The technologies inspired from biology and nature enable to equip the manufacturing systems with these characteristics. This paper proposes an ant colony inspired autonomous manufacturing system in which the resources on the shop floor are considered as the autonomous entities. Each entity overcomes the disturbance by itself or negotiates with the others. The swarm of cognitive agents with the ant-like pheromone based negotiation mechanism is proposed for controlling the shop floor. The functionality of the developed system is proven on the test bed.

에이전트 기술 응용 Shop floor 제어 방안 (Method for Shop Floor Control Using Agent-Technique)

  • 박홍석
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.176-181
    • /
    • 2001
  • Due to the increasing complexity to handle conflicts and interruptions caused by resource failures and rush orders, shop control is obliged to redesign its organization according to the changing demands of the manufacturing control. These demands are leading to the development of decentralization and gradually to their permanent optimization. As a result, a powerful modeling method which can be adapted efficiently is required. The use of agent theory enables specific modeling of the relevant shop planning activities. The planning activities are modeled in a so-called activity modeling through the definition of three classes of agents; Plan Agent, Manufacturing System Agent and Control Agent as well as the description of the cooperative relationship among these agents. On the basis of the activity model the agent-based shop control method is developed which emphasizes the distributed problem-solving and the cooperation with relevant agents.

  • PDF

An intelligent planner of processing equipment for CSCW-based shop floor control in agile manufacturing

  • Kim, Hwajin;Cho, Hyunbo;Jung, Mooyoung
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.185-192
    • /
    • 1995
  • A common control model used to implement computer integrated manufacturing(CIM) is based on the hierarchical decomposition of the shop floor activities, in which supervisory controllers are responsible for all the interactions among subordinates. Although the hierarchical control philosophy provides for easy understanding of complex systems, an emerging manufacturing paradigm, agile manufacturing, requires a new control structure necessary to accommodate the rapid development of a shop floor controller. This is what is called CSCW(computer supported cooperative work)-based control or component-based heterarchical control. As computing resources and communication network on the shop floor become increasingly intelligent and powerful, the new control architecture is about to come true in a modern CIM system. In this paper, CSCW-based control is adopted and investigated, in which a controller for a unit of device performs 3 main functions - planning, scheduling and execution. In this paper, attention is paid to a planning function and all the detailed planning activities for CSCW-based shop floor control are identified. Interactions with other functions are also addressed. Generally speaking, planning determines tasks to be scheduled in the future. In other words, planning analyzes process plans and transforms process plans into detailed plans adequate for shop floor control. Planning is also responsible for updating the process plan and identifying/resolving replanning activities whether they come from scheduling or execution.

  • PDF

CNC Shop Floor 조업지원용 다능형 CAM시스템 (PosCAM) 개발 (Development of Versatile CAM System (PosCAM) Supporting CNC Shop Floor Operation)

  • 서석환;지우석;김성구;홍희동;조정훈;정대혁;김창남
    • 한국CDE학회논문집
    • /
    • 제4권4호
    • /
    • pp.339-349
    • /
    • 1999
  • The punose of this paper is to introduce the comprehensive CAM system (called PosCAM) supporting various function requested from shop floor operators. PosCAM is comported of two subsystems (PosCAM I and PosCAM II) which are designed to make up for the contemporary CAD/CAM systems. PosCAM I is mainly for : a) verifying the part programs written in both custom macros and standard G-codes, b) enhancing machining productivity and quality with built-in cutting conditions and feedrate optimization algorithm. PosCAM II is for : a) efficiently managing the numerous part programs and tool data stored in CNC memory, and b) integratively controlling and monitoring various CNCs from the control center through RS-422 with DNC 2 protocol. The developed systems have been tested via various experiments, and can be Applied for the industrial CNC machine shop as a means for enhancing productivity. The PosCAM system has been implemented and successfully used in the Machine Shop Department of PosCAM since march 1998.

  • PDF