• Title/Summary/Keyword: shoot lengths

Search Result 55, Processing Time 0.018 seconds

Flowering, Fruit Characteristic and Shoot Growth of the Mango, cv. 'Irwin' in Response to D ifferent Night Temperature (야간온도 변화에 따른 망고 'Irwin'의 개화, 과실특성 및 수체생육)

  • Lim, Chan Kyu;An, Hyun Joo;Jeon, Mikyoung;Kim, Seolah;Chung, Sun Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.349-355
    • /
    • 2021
  • The effect of night temperature was investigated on mango (Mangifera indica cv. Irwin) for setting appropriate night temperature and managing mango cultivation in a greenhouse. Different night temperatures (10, 15, and 20℃) were treated from budding to fruit development in mango trees. As night temperature increased, the initiation of flowering, full blooming, fruiting, and fruit development tended to be accelerated. There were no significant differences in the growth of shoots flushed after the fruit harvest among trees treated with different night temperatures. The lengths of the flower stalk were the shortest at 10℃ of night temperature; however, there were no significant differences between 15℃ and 20℃ of the night temperature. The length, diameter, and weight of mango fruits were higher at 15℃ and 20℃ than 10℃. Soluble solid contents and acidities showed no difference; the firmness and skin color were better as the night temperature increased. Accordingly, setting the minimum night temperatures to 15℃ or 20℃ can increase the number of fruits and produce high-quality fruits when cultivating mango in the greenhouse. Even the minimum night temperature to 15℃ can reduce heating costs in the greenhouse.

Effects of Initial Defoliation Stage and Defoliation Interval on the Growth of White Clover Cultivars Differing in Leaf Size (최초예취시간 및 예취간격이 엽의 크기가 다른 White Clover 품종들의 생장에 미치는 영향)

  • 강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.264-273
    • /
    • 1992
  • Availability of white clover (Trifolium repens L.) has been limited due to its poor introduction to swards and lack of persistence under improper grazing management. This experiment was conducted to determine the effects of initial defoliation stage and defoliation interval on the growth of white clover varieties. Individual plants of Regal (large leaf), Louisiana S.1 (medium-large leaf), Grasslands Huia (medium-small leaf) and S184 (small leaf) were grown in containers (4.5 $\times$ 13.5 cm) containing a 1:2:1 soil:sand:Promix until reaching to the stage of 1, 4, or 8 trifoliolates, and then clipped to remove all fully expanded leaves every 7 or 28 days (d). For analysis of morphological parameters, plants were sampled on the final harvest date (0 d), and 7, 14, 21, and 28 d after the final harvest date. Harvested dry weight (dw) of all varieties declined as defoliation interval declined or initial defoliation was made earlier. That of Regal was the highest as initial defoliation was delayed. On the 7 d regrowth shoot and root dw were increased as initial defoliation was delayed or interval lengthened, whereas on the 28 d regrowth the trend was alleviated. Root dw and biomass of Regal were higher than the other varieties during the whole regrowing period, when the increase of biomass resulted from that of shoot dw. Leaf areas and petiole lengths of all varieties declined under 7 d defoliation interval. The area and the length declined with earlier initial defoliation on the 7 d regrowth but not on the 28 d regrowth. Stolon length and growing tips of S184 were the highest and increased more steeply during regrowth, while those of Regal were the lowest and did slightly. It is concluded that the continuous defoliation and the first defoliation at earlier growth stage have detrimental effects on growth of white clover, although larger leaf types are more productive but less persistent in a sward than smaller leaf types.

  • PDF

Effects of Several Amendment Materials on Salt Accumulation and Kentucky Bluegrass (Poa pratensis L.) Growth in Sand Growing Media Established Over the Reclaimed Saline Soil (염해지 토양을 기반으로 조성된 모래 지반구조에서 토양개량제 종류에 따른 토양내 염류 집적과 켄터키 블루그래스(Poa pratensis L.)의 생육)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.208-216
    • /
    • 2011
  • The purpose of this study was to find soil-amendment materials those support the growth of Kentucky bluegrass and reduce salt accumulation at the sand based growing media in saline conditions. Rootzone profile in columns consisted of 20 cm of top soil, 20 cm coarse sand as capillary rise interruption layer and 10 cm reclaimed paddy soil as the base of the profile. Top soils were mixtures of dredged sand (DS) and amendment with compositions of 90% sand + 10% peat moss (SP), 80% sand + 10% soil + 10% bottom ash (SSoBa), 80% sand + 20% soil (SSo), 90% sand + 5% peat + 5% zeolite (SPZ), and 80% sand + 20% bottom ash (SBa). The top soil mixtures of DS and amendments were treated with and without gypsum (Gp). The columns were soaked into 5 cm depth saline water reservoir with the salinity level of $3-5dSm^{-1}$. Irrigation of $2dSm^{-1}$ saline water with rate of $5.7mm\;day^{-1}$ was applied by 3 day interval. Application of zeolite decreased SAR, application of gypsum decreased ECe of the sand amended by peat + zeolite and decreased the SAR of sand amended by bottom ash. The SP and SSoGp resulted in higher clipping dry weight of Kentucky bluegrass. The SSoGp and SPZGp showed longer root lengths. The SP and SBaGp showed higher visual quality. Addition of gypsum to soil and bottom ash treatments resulted in the increased shoot growth, whereas additional gypsum to the treatments of peat, soil and zeolite increased the root growth of Kentucky bluegrass.

Effect of the Elevated Temperature on the Growth and Physiological Responses of Peach 'Mihong' (Prunus persica) (온도 상승처리가 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향)

  • Lee, Seul Ki;Cho, Jung Gun;Jeong, Jae Hoon;Ryu, Suhyun;Han, Jeom Hwa;Do, Gyung-Ran
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.373-380
    • /
    • 2020
  • This study was conducted to investigate the effect of elevated temperatures on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different temperature conditions in the sunlight phytotron rooms from April 25 to July 5, 2019; Control (average temperature in normal years in Jeonju city), +3.4℃ treatment (expecting temperature in mid-21st century), +5.7℃ treatment (expecting temperature in late 21st century). The shoot numbers and lengths were increased while the temperature was increased, but the leaf areas were not statistically different. The harvest dates were July 1, June 24 and 21 at the control, +3.4℃, and +5.7℃, respectively. The fruit weights were increased at +3.4℃ but decreased at +5.7℃ compared to the control. The tree yield was the highest in the +3.4℃ (2,898g), followed by the control (2,746g) and the +5.7℃ (2,404g). These are related to the result that the average of maximum photosynthesis rate at 3.4℃ (14.93μmol·CO2·m-2·s-1) was higher than those at the control (13.79μmol·CO2·m-2·s-1) and +5.7℃ (13.20μmol·CO2·m-2·s-1) from mid-May to early June, the fruit growing season. Also, the stomatal densities were higher at the +3.4℃ (229ea/㎟), compared to the control (181ea/㎟). The rate of floral bud differentiation affecting the yield in the following year was the lowest at the +5.7℃. These results suggest that a temperature elevated to 3.4℃ in the future may give a positive effect on the yield and quality of peach 'Mihong' while a temperature elevated above 5.7℃ may affect negatively.

Shading Effects on the Growth and Physiological Characteristics of Osmanthus insularis Seedlings, a Rare Species (희귀 식물 박달목서 유묘의 생장 및 생리적 특성에 대한 차광 효과)

  • Da-Eun Gu;Sim-Hee Han;Eun-Young Yim;Jin Kim;Ja-Jung Ku
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.88-96
    • /
    • 2024
  • This study was conducted to determine the optimal light conditions for the in situ and ex situ conservation and restoration of Osmanthus insularis, a rare plant species in South Korea. Evaluations included the growth performance, leaf morphological features, photosynthetic characteristics, and photosynthetic pigment contents of seedlings grown from April to November under different light conditions (100%, 55%, 20%, and 10% relative light intensity). The shoot lengths and root collar diameters did not differ significantly with relative light intensity. The dry weights of leaves, stems, and roots and the leaf number were highest at 55% relative light intensity. The leaf shape showed morphological acclimation to light intensity, with leaf area decreasing and thickness increasing as the relative light intensity increased. Several leaf parameters, including photosynthetic rate and stomatal conductance at light saturation point, net apparent quantum yield, and dark respiration, as well as chlorophyll a, chlorophyll b, and carotenoid contents, were all highest at 55% relative light intensity. Under full light conditions, the leaves were the smallest and thickest, but the chlorophyll content was lower than at 55% relative light intensity, resulting in lower photosynthetic ability. Plants grown at 10% and 20% relative light intensity showed lower chlorophyll a, chlorophyll b, and carotenoid contents, as well as decreased photosynthetic and dark respiration rates. In conclusion, O. insularis seedlings exhibited morphological adaptations in response to light intensity; however, no physiological responses indicating enhanced photosynthetic efficiency in shade were evident. The most favorable light condition for vigorous photosynthesis and maximum biomass production in O. insularis seedlings appeared to be 55% relative light intensity. Therefore, shading to approximately 55% of full light is suggested for the growth of O. insularis seedlings.