• Title/Summary/Keyword: shock-absorbing

Search Result 117, Processing Time 0.023 seconds

Comparative Study on the Several Types of Double-Acting Oleo-Pneumatic Shock Absorbers of Aircraft Part II. Numerical Analysis and Comparison (항공기 올레오식 2중 완충기 종류에 따른 특성 비교 연구 Part II. 수치해석 및 비교)

  • Jeong, Seon Ho;Lee, Cheol Soon;Kim, Jeong Ho;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.951-966
    • /
    • 2017
  • In this work, numerical analyses are carried out and the behaviors are investigated for three types of double-acting oleo-pneumatic shock absorbers along with the mathematical models proposed in the part I of this work. After presenting each numerical algorithm corresponding to each model, the numerical algorithms are implemented as user-subroutines in MSC/ADAMS commercial multi-body dynamic software. By using the developed user-subroutines, numerical studies are carried out for compression/stretch test as well as drop test. From the comparative studies, we investigated the salient feature of each double-acting oleo-pneumatic shock absorber. Results identifies that it is possible to increase the absorbing efficiency in accordance with the requirements for aircraft landing conditions.

Drop Impact Analysis of Outside Cooling Unit Package of System Air-Conditioner and Experimental Verification (시스템 에어컨 실외기 포장품의 낙하충격해석 및 시험적 검증)

  • Kim, Hyung-Seok;Lee, Boo-Yoon;Lee, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.111-116
    • /
    • 2018
  • This research examines the drop impact of an external cooling unit package of an air conditioner system. The packaging is composed of a shock-absorbing material, which protects the package contents by absorbing the impact energy and other parts for fixture. Accurate quantification of the impact acceleration experienced by the package contents is necessary to design an effective packaging with minimal volume and sufficient shock absorbing capacity. Explicit time integration was used for the drop impact analyses. A finite element model of the package was constructed, material testing and material model selection were carried out, and sensors for data acquisition were modeled to obtain accurate simulation results. The results were compared with real physical test data. Due to imprecise modeling of the damping, the acceleration and strain values predicted by the simulation were larger than those from physical test. However, the trend of the history data and the peak deceleration value in the direction of impact showed good agreements. Thus, the analysis model and scheme are suitable for the design of an air conditioner cooling unit package.

Earthquake Resistance Capacity of a Typical Bridge by Connection Design (연결부분 설계에 의한 일반교량의 내진성능)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.543-550
    • /
    • 2010
  • Earthquake resistant design should provide a description of the structural failure mechanism under earthquakes as well as satisfy the requirement of other designs, e.g. design strengths of each structural member should be equal or greater than the required strengths. The reason of such a requirement is the randomness of seimic loads different from other loads. In this study, a typical bridge is selected as an analysis bridge and the procedure is given to get the ductile failure mechanism through connection design. It is shown with the procedure that the earthquake resistant capacity can be ensured within structural member's strengths required by other designs, without cost raise by strength increase of structural members or by use of shock absorbing device e.g. shock transfer unit.

Crashworthy Design and Test of Landing Gear (착륙장치 내추락 설계 및 시험평가)

  • Kim, Tae-Uk;Lee, Sang-Wook;Shin, Jeong-Woo;Lee, Seung-Kyu;Kim, Sung-Chan;Hwang, In-Hee;Jo, Jeong-Jun;Lee, Je-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.601-607
    • /
    • 2012
  • The main function of a landing gear is to absorb the impact energy during touchdown. It it occasionally required for landing gear to have crashworthiness for improving survivability and safety in case of emergency landing. This paper introduces the design concept, performance analysis and drop test procedures for the development of the crashworthy landing gear. The shock absorbing ability and the crash behavior are proved by analyzing various sensor data and video clips from high speed camera recording during drop tests.

Analysis on the Ballistic and Blast Shock for a Space Frame Structure (내충격 개방형 구조물에 대한 피탄 및 폭압 충격 해석)

  • Joo, Jae-Hyun;Gimm, Hak-In;Koo, Man-Hoi;Park, Jee-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.933-940
    • /
    • 2010
  • A numerical analysis for the space frame structure under ballistic and blast loads was performed using LS-DYNA, a commercial code. The space frame structure was developed to be adapted to the ground vehicle in the future and it was designed to build with Al7039 frames and lightweight multi-layered panels for the purpose of weight reduction and shock mitigation. The analyses have done for side impacts by a cylindrical projectile and Comp. C-4 explosive representing major threats to the vehicle. The deformed shape of the panel section and stresses as well as accelerations of the frames calculated from LS-DYNA were compared to the test results to validate the analysis model. The internal energies for panels and frames from LS-DYNA were also compared to each other to discern their role in absorbing the ballistic and blast impact.

A Study on the Structural Design Approach to Improve Shockproof Characteristic in Cathode Ray Tube (음극선관의 내충격 특성 향상을 위한 구조 설계에 관한 연구)

  • Park, Sang-Hu;Kim, Won-Jin;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.100-105
    • /
    • 2000
  • In this study the structural design concepts of main parameters of a Cathode Ray Tube(CRT) such as frame spring and shadow mask were proposed to guarantee a failure-proof CRT under mechanical shock. With computer simulation and experiments some information on the structural design concept was obtained as followings: the frame and the shadow mask of the CRT needed designing to increase strength so double-beads shape at the corner of frame was newly designed for it, And the spring which interconnected frame with panel glass was required to deform elastically for the purpose of absorbing the shock energy in the direction of drop. A new type of spring 'twisting spring' was designed to achieve the flexibility in that direction. By using it the deformation energy of a shadow mask could reduced to some degree. To accomplish those simulations commerical codes Pam-Crash and I-DEAS were used and a typical CRT was analyzed as an example to prove the usefulness of this study.

  • PDF

Design of a Helmet with Improved Ventilation for Personal Mobility (통기성을 개선한 개인용 이동장치 헬멧 구조 설계)

  • Jin-San Oh;Seong-Jun Kwon;Min-Ki Hong;Seong-Won Jeong
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2022
  • A helmet is essential for safety when operating personal mobility. However, user's actual helmet wear rate is low due to the inconvenience of wearing and poor ventilation. In this study, a new helmet structure with improved ventilation for personal mobility devices was designed. To design a new structure with improved breathability compared to the existing helmet while satisfying the safety regulations for the helmet, a generative design method was applied to the shock-absorbing liner of the helmet. In addition, other materials were applied to create a structure with improved ventilation while maintaining safety. The generated design result was verified for shock absorption through simulation. As a result of the study, EPS, the current material was replaced with CFRP and Kevlar, and the structure was changed. This design was judged to satisfy safety regulations against impact. The new helmet structure is expected to improve the helmet usability for personal mobility and increase the helmet wear rate of users.

Development Trend of Shock-Absorbing Landing gear for Lunar Lander (달착륙선 충격흡수 착륙장치 개발동향)

  • Kim, Won-Seock;Kim, Sun-Won;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.119-129
    • /
    • 2011
  • The soft landing of a lunar lander after the entrance of lunar orbit is an essential prerequisite for the accomplishment of the lander's lunar mission. During the landing process of a lunar lander, efficient shock absorption and stability maintenance are indispensible technology to protect payloads. Therefore, the landing gear is a crucial structural component of a lunar lander, it has to absorb the kinetic energy associated with touchdown and support the static load of the landing module in an upright position. In this paper, various landing gears of lunar landers which are being developed as well as which had been successfully landed on the moon surface are investigated. In the end, the Korean lunar lander, which is being designed for preliminary development model, is presented as an example of the lunar lander development.

  • PDF

Study on Dynamic Characteristics of Curved Bellows (곡선형 벨로우즈의 동적특성 분석)

  • Hwang, J.P.;Kim, J.G.;Park, Y.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.29-34
    • /
    • 2008
  • Bellows is widely used in many industrial fields as it provides a relatively simple means of absorbing mechanical shock, vibration and thermal deformation with flexibility. In this study, the inherent dynamic characteristics of curved bellows are numerically studied according to the variation of angle, curvature and crest density, etc. For these numerical studies, a parametric finite element modelling program of curved bellows is constructed using ANSYS APDL. The validity of numerical results obtained from ANSYS software is experimentally verified using the test model made by RP machine SLA 5000.

  • PDF

The study on the influences of vibration associated with cycling on the human body (자전거 주행 중 발생하는진동이 인체에 미치는 영향)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Kim, Sa-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.643-646
    • /
    • 2009
  • This study was conducted to simulate the influence of vibration associated with cycling on the body. In this simulation the human model that the riding on a bicycle which have suspension and non-suspension front forks was used. And to arouse impact two kind of bump, 50mm height of radical raised spot and 150mm height of slow raised spot, were used. The vertical displacement of head, the vertical acceleration of head and the torque of neck joint were analysed. The results say that the function of shock absorbing was grater when passing though a 50mm height of radical raised spot then a 150mm height of slow raised spot.

  • PDF