• Title/Summary/Keyword: shock-absorbing

Search Result 117, Processing Time 0.026 seconds

Basic Study of the Hysteresis of a Nano Shock Absorbing Damper by Employing Mixed Lyophobic Coating Silica Gel (실리카 겔의 소수화 코팅 혼합 정도에 따른 나노 충격 흡수 장치의 이력 현상에 대한 기초적 연구)

  • 문병영;김흥섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.59-66
    • /
    • 2003
  • A novel application of nano-technology in the field of engineering, called colloidal damper, is investigated. This device is complementary to the hydraulic damper, having a cylinder-piston construction. Particularly for colloidal damper, the hydraulic oil is replacedby a colloidal suspension, which is consisted from a nano-porous matrix with controlled architecture and a lyophobic fluid. In this experimental work, the porous matrix is composed from silica gel, with labyrinth architecture, coated by organo-silicones substances in order to achieve a hydrophobic surface. Water is considered as associated lyophobic fluid. The colloidal damper test rig and the measuring technique of the hysteresis are described. the influence of the hydrophobicity level upon the colloidal damper hysteresis is investigated, for silica gels with similar pores distribution. A certain desired shape of the hysteresis can be achieved by employing mixture of silica gels with different level of hydrophobicity and/or architecture. With these results, it is believed that the proposed damper can be designed and be applied to the desired structure.

Safety Evaluation of Net-type Debris Flow Protection System Using Numerical Analysis (수치해석을 이용한 네트형 토석류 방호시스템의 안전성 평가)

  • Lee, Eung-Beom;Lim, Hyun-Taek;Whang, Dae-Won;Lim, Chang-Su;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.157-168
    • /
    • 2018
  • Recently, the occurrence of typhoons and heavy rainfall is increasing due to climate change. This causes increase in possibility of landslide damages in rural areas. However, in reality, the precise engineering stability assessment studies are still insufficient. Therefore, in order to reduce the landslide damages and effectively manage mountainous areas, the development of disaster prevention techniques is needed. In this study, to analyze the shock absorbing effect of the buffer-spring during application of dynamic impact load in the debris flow protection system, numerical analysis is carried out for each free field of the buffer-spring and the load sharing ratio of the buffer-spring is also examined. In addition, the field applicability is verified by comparison of the tensile strength of the conventional buffer-spring and the wedge type buffer-spring on various magnitudes of dynamic impact load. As a result of the study, it is found that the net-type debris protection system is effective to mitigate loss of properties and human lifes during landslide.

Module-type bicycle accessory design research focusing on bicycle user convenience by applying S Foam Core (S Foam Core를 적용한 자전거 사용 편의성에 중점을 둔 모듈형 자전거 액세서리 디자인 연구)

  • Park, Yu-Jin;Song, Sung-il;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.32-38
    • /
    • 2019
  • Carbon material was used for the new module-type bicycle accessory focusing on the user convenience through service design methodology. In the case of using the existing carbon material, the impact could not be endured while riding the bicycle and there was the case of breaking. To resolve this kind of problem, the new type of material (S Foam Core material) was applied. The intensity, twist intensity, shock absorbing power, and vibration were measured for the existing carbon material and the S Foam Core material. As a result, the S Foam Core material showed more outstanding results than the existing carbon material. This study produced prototype with the S Foam Core material to verify the performance through tests and report the result.

Capture Simulation for Space Objects Using Biomimetic Space Nets (생체 모방 우주 그물을 이용한 우주 물체 포획 시뮬레이션)

  • Mi, Jang;Hyun-Cheol, Shin;Chang-Hoon, Sim;Jae-Sang, Park;Hae-Seong, Cho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.24-34
    • /
    • 2022
  • This paper investigates the capture of a 12U-sized CubeSat space object using a spider-web structure-based space net. The structural dynamics analysis program ABAQUS is used to simulate the shock-absorbing capability of the space net with a diagonal length of 2.828 m. The space object is modelled as a rigid body, and the space net is modelled using non-linear elastic beam elements. The simulations reveal that the spider-web structure-based space net outperforms the squared space net of the same structural weight in capturing the space object. The numerical simulations are conducted to examine the successful or unsuccessful captures of the space object in various cooperative and non-cooperative motions.

Finite element analysis of the effects of a mouthguard on stress distribution of facial bone and skull under mandibular impacts (하악골 충격시 안면 두개골의 응력분산양상에 미치는 구강보호장치의 역할에 관한 유한요소법적 연구)

  • Noh, Kwan-Tae;Kim, Il-Han;Roh, Hyun-Sik;Kim, Ji-Yeon;Woo, Yi-Hyung;Kwon, Kung-Rock;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of a mouthguard on stress distribution under mandibular impact. Materials and methods: The FEM model of head consisted of skull, maxilla, mandible, articular disc, teeth, and mouthguard. The impact locations on mandible were gnathion, the center of inferior border, and the anterior edge of gonial angle. And the impact directions were vertical, oblique ($45^{\circ}$), and horizontal. The impact load was 800 N for 0.1 sec. Results: When vertical impact was applied, the similar stress and the distribution pattern was occurred without the relation of the mouthguard use (P>.05). The model with mouthguard was dispersed the stress to the teeth, the facial bone and the skull when the oblique ($45^{\circ}$) impacts were happened. However, the stress was centralized on the teeth in the model without mouthguard(P<.05). The model with mouthguard was dispersed the stress to the teeth, the facial bone and the skull when the horizontal impacts was occurred. However, the stress was centralized on the teeth without mouthguard (P<.05). For all impact loads, stress concentrated on maxillary anterior teeth in model without mouthguard, on the contrary, the stress was low in the model with mouthguard and distributed broadly on maxillary anterior teeth, facial bone, and skull. Conclusion: The mouthguard was less effective at shock absorbing when vertical impact was added. However, it was approved that mouthguard absorbed the shock regarded to the oblique ($45^{\circ}$) and horizontal impact by dispersing the shock to the broader areas and decreasing the stress.

Heel Pad Thickness: Measurement by Simple Plain Radiography (족부 측면 단순 방사선 사진을 이용한 뒤꿈치 패드 두께 측정)

  • Park, In-Heon;Song, Kyung-Won;Shin, Sung-Il;Lee, Jin-Young;Lee, Seung-Yong;Kim, Jin-Duck;Kim, Tae-Hyoung
    • Journal of Korean Foot and Ankle Society
    • /
    • v.8 no.1
    • /
    • pp.22-25
    • /
    • 2004
  • Purpose: The heel fat pad has a unique structure that is important for its shock absorbing function. Loss of elasticity and change in the thickness of the heel pad have been suggested as cause of heel pain. The present study shows the relationship between the thickness of heel fat pad and age, sex, obesity and plantar heel pain. Materials and Methods: A study of heel pad thickness using plain lateral radiographs, unloaded by body weight, was carried out on 66 patients with plantar heel pain and 326 normal subjects. The population was divided into two or three groups according to their age, sex, body mass index, and the presence of symptom. We evaluated the differences in heel pad thickness between groups, and the relationship between BMI and Sex and Age was also determined, using statistically analytic method by SPSS version 10.1 program. Results: Heel pad thickness was greater in the subject over 40 years old (p<0.001), and in the overweight (p<0.001), and male heel pad was thicker than female (p<0.001). But there was no statistically significant difference for heel pad thickness between normal subject and plantar heel pain group. Conclusion: In this study, we found that there is a relationship between heel pad thickness and age, sex, and obesity. But we could not show that the difference of heel pad thickness is contributing factor to plantar heel pain. Although it could not be proved statistically, we believe that a change of heel pad thickness play a role in the development of heel pain. So we are planning to assess a relationship of heel pad elasticity and thickness and plantar heel pain again with prospective study method on the basis of the results of this study.

  • PDF

Effects of Visual Information Blockage on Landing Strategy during Drop Landing (시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향)

  • Koh, Young-Chul;Cho, Joon-Haeng;Moon, Gon-Sung;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.