• Title/Summary/Keyword: shock test

Search Result 982, Processing Time 0.03 seconds

Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents (압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가)

  • Pang, Seungki;Shin, Jinwon;Jeong, Hyunjin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

Effect of Physical Characteristics of Emulsion Asphalt and Aggregate on Performance of Chip Seal Pavements (유화아스팔트 바인더와 골재 특성이 칩씰 포장의 공용성에 미치는 영향 연구)

  • Hong, Ki Yun;Kim, Tae Woo;Lee, Hyun Jong;Park, Hee Mun;Ham, Sang Min
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the effect of physical characteristics of emulsion asphalt and aggregate on performance of chip seal pavements. METHODS : In order to evaluate the performance of chip seal materials, the sweep tests and Vialit Plate Shock tests were conducted on the mixtures with five emulsion asphalt binders and three aggregate types. The sweep tests was intended to investigate the change of bonding properties between emulsion asphalt and aggregate with curing time. The Vialit Plate Shock test was used to evaluate the bonding properties of chip seal materials at low temperatures. RESULTS : Results from sweep tests showed that polymer modified emulsion asphalt can reduce the curing time by 1.5 hour comparing with typical emulsion asphalt. It is also found that the Flakiness Index of aggregates and absorption rate of binder are the major factors affecting the bonding properties of chip seal materials. The Vialit Plate Shock test results showed that the average aggregate loss of CRS-2 is ten times higher than CRS-2P No.2 indicating that the use of polymer additives in emulsion asphalt can improve the performance of chip seal materials in low temperature region. CONCLUSIONS : The use of polymer in emulsion asphalt can decrease the curing time of chip seal materials and increase the bonding properties between aggregates and asphalt binder. It is also concluded that the lower Flakiness Index and absorption rate of aggregates can improve the performance of chip seal pavement.

RESEARCH FOR ROBUSTNESS OF THE MIRIS OPTICAL COMPONENTS IN THE SHOCK ENVIRONMENT TEST (MIRIS 충격시험에서의 광학계 안정성 확보를 위한 연구)

  • Moon, B.K.;Kanai, Yoshikazu;Park, S.J.;Park, K.J.;Lee, D.H.;Jeong, W.S.;Park, Y.S.;Pyo, J.H.;Nam, U.W.;Lee, D.H.;Ree, S.W.;Matsumoto, Toshio;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.39-47
    • /
    • 2012
  • MIRIS, Multi-purpose Infra-Red Imaging System, is the main payload of STSAT-3 (Korea Science & Technology Satellite 3), which will be launched in the end of 2012 (the exact date to be determined) by a Russian Dnepr rocket. MIRIS consists of two camera systems, SOC (Space Observation Camera) and EOC (Earth Observation Camera). During a shock test for the flight model stability in the launching environment, some lenses of SOC EQM (Engineering Qualification Model) were broken. In order to resolve the lens failure, analyses for cause were performed with visual inspections for lenses and opto-mechanical parts. After modifications of SOC opto-mechanical parts, the shock test was performed again and passed. In this paper, we introduce the solution for lens safety and report the test results.

Electric Degradation of Failure Mode of Solar Cell by Thermal Shock Test (열충격 시험 후 태양전지 파괴 모드에 따른 전기적 특성변화)

  • Kang, Min-Soo;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.327-332
    • /
    • 2013
  • 일본 연구에서는 열충격 시험을 통한 태양전지의 파괴모드에 따른 전기적 특성을 분석하였다. 시편은 Photovoltaic Module을 만들기 전 3 line Ribbon을 Tabbing한 단결정 Solar Cell을 제작하였다. 열충격 시험 Test 1의 온도조건은 저온 $-40^{\circ}C$, 고온 $85^{\circ}C$, Test 2는 저온 $-40^{\circ}C$, 고온 $120^{\circ}C$에서 Ramping Time을 포함하여 각각 15분씩, 총 30분을 1사이클로 500사이클을 각각의 조건으로 수행하였다. 열충격 시험 후 Test 1에서는 4.0%의 효율 감소율과 1.5%의 Fill Factor 감소율을 확인하였으며, Test 2에서는 24.5%의 효율 감소율과 11.8%의 Fill Factor 감소율을 확인하였다. EL(Electroluminescence)촬영 및 단면을 분석한 결과, Test 1과 Test 2 시편 모두 Cell 표면 및 내부에서의 Crack이 발견되었다. 하지만, Test 2의 시험이 Test 1보다 가혹한 온도조건의 시험으로 인해 Test 1에서 나타나지 않았던, Cell 파괴를 Test 2에서 확인하였다. 결국, Test 1에서 효율의 직접적인 감소 원인은 Cell 내부에서의 Crack이며, Test 2에서는 Cell 내부에서의 Crack 및 Cell 파괴로 인한 Cell 자체의 성능저하로 효율이 크게 감소한다는 것을 본 실험을 통하여 규명하였다.

Nondestructive Evaluation of Thermal Shock Damage for Alumina Ceramics (알루미나 세라믹에 대한 열충격 손상의 비파괴적 평가)

  • Lee, Jun-Hyeon;Lee, Jin-Gyeong;Song, Sang-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1189-1196
    • /
    • 2001
  • The objective of this paper is to investigate the applicability of acoustic emission(AE) technique to monitor the progress of the thermal shock damage on alumina ceramic. For this purpose, alumina ceramic specimen was heated in the furnace and then was quenched in the water tank. When the specimen was quenched in the water tank, complex AE signals due to the initiation of micro-cracks and boiling effect were generated by the progress of thermal shock damage. These mixed AE signals have to be classified for monitoring the degree of the thermal shock damage of alumina ceramics. In this paper, the mixed AE signals generated from both the boiling effect and the crack initiation under thermal shock test was analyzed. The characteristics of AE signals were also discussed by considering the variation of bending strength and Yongs modulus of specimens.

Innovative Modeling of Explosive Shock Wave Assisted Drug Delivery (고에너지물질에 의한 약물 전달 시스템 연구)

  • Yoh, Jai-Ick;Kim, Ki-Hong;Lee, Kyung-Cheol;Lee, Hyun-Hee;Park, Kyoung-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2006
  • Recent advances in energetic materials modeling and high-resolution hydrocode simulation enable enhanced computational analysis of bio-medical treatments that utilize high-pressure shock waves. Of particular interest is in designing devices that use such technology in medical treatments. For example, the generated micro shock waves with peak pressure on orders of 10 GPa can be used for treatments such as kidney stone removal, transdermal micro-particle delivery, and cancer cell removal. In this work, we present a new computational methodology for applying the high explosive dynamics to bio-medical treatments by making use of high pressure shock physics and multi-material wave interactions. The preliminary calculations conducted by the in-house code, GIBBS2D, captures various features that are observed from the actual experiments under the similar test conditions. We expect to gain novel insights in applying explosive shock wave physics to the bio-medical science involving drug injection. Our forthcoming papers will illustrate the quantitative comparison of the modeled results against the experimental data.

  • PDF

Shock Analysis of Optical Disk Drive Considering Rotational Effect (회전 효과를 고려한 광디스크 드라이브의 충격해석)

  • Lim, Seung-Ho;Park, No-Cheol;Park, Young-Pil;Hwang, Hyo-Kune;Seo,, Jeong-Kyo;Yoo, Seung-Hon;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.622-625
    • /
    • 2008
  • SIL-based optical disk drive will be promising candidate of next-generation storage devices. However, a near-field optical disk drive requires the robustness to external shock because of extremely small gap between SIL and media. Especially, high-level shock damages permanently to SIL and it makes difficulties in general application. To study the likelihood of failure, the shock analysis must be performed over all others. This research explores the dynamic characteristics of rotating disk through FEM which is compared to analytical solution and experimental modal analysis. We also develop the finite element model of an optical disk drive, which includes rubber mounts, sled base, rotating disk and pickup assembly, and simulate the shock response.

  • PDF

Innovative Modeling of Explosive Shock Wave Assisted Drug Delivery (고에너지물질에 의한 약물 전달 시스템 연구)

  • Yoh, Jai-Ick;Kim, Ki-Hong;Lee, Kyung-Cheol;Lee, Hyun-Hee;Park, Kyoung-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.213-217
    • /
    • 2006
  • Recent advances in energetic materials modeling and high-resolution hydrocode simulation enable enhanced computational analysis of bio-medical treatments that utilize high-pressure shock waves. Of particular interest is in designing devices that use such technology in medical treatments. For example, the generated micro shock waves with peak pressure on orders of 10 GPa can be used for treatments such as kidney stone removal, trans-dermal micro-particle delivery. and cancer cell removal. In this work, we present a new computational methodology for applying the high explosive dynamics to bio-medical treatments by making use of high pressure shock physics and multi-material wave interactions. The preliminary calculations conducted by the in-house code, GIBBS2D, captures various features that are observed from the actual experiments under the similar test conditions. We expect to gain novel insights in applying explosive shock wave physics to the bio-medical science involving drug injection. Our forthcoming papers will illustrate the quantitative comparison of the modeled results against the experimental data.

  • PDF

ER Smart Structures for Shock Wave Reduction (충격파 저감을 위한 ER 지능구조물)

  • 김재환;김지선;최승복;김경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.679-687
    • /
    • 2003
  • Shock wave reduction in electrorheological(ER) smart structures is studied. ER insert is a composite structure comprising two elastic outer layers between which is sandwiched layer of ER fluid. When a voltage is applied across the outer layers. the shear modulus and the loss factor of the ER fluid are enabled, and thus the dynamic properties of the composite structure is altered. For the shock wave reduction in a hull mount of a submerged structure, ER inserts are made on the hull mount structure. To investigate the ER insert shape. many types of ER insert pattern are considered. Modal test of ER insert structures is performed to obtain the mode shapes, natural frequencies and the acceleration transmissibility. The acceleration transmissibility is reduced at such a frequency region when an electric field is applied. It is observed that the natural frequencies and mode shapes can be tunable by applying electric field. The ER-inserted hull mount is installed in an integrated system and the overall performance of shock wave reduction is tested. The possibility of shock wave reduction in the hull mount is demonstrated.

Study on The Anti-Shock Performance Evaluation of TFT-LCD module for Mobile IT Devices (이동형 정보통신 기기용 화면표시 장치의 내충격 평가 방법 연구)

  • Kim Byung-Sun;Kim Jung-Woo;Lee Dock-Jin;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun;Chu Young-Bee;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.130-137
    • /
    • 2006
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact test-redesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.