• 제목/요약/키워드: shock response analysis

검색결과 263건 처리시간 0.024초

탄성 효과를 고려한 감시 로봇 모델의 충격 응답 해석 (Shock Response Analysis of Guard Robot Considering the Elastic Effect)

  • 김정찬;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.107-110
    • /
    • 2006
  • In this paper, shock response analysis considering the elastic effects of guard robot is performed using computer simulations when a machine gun of guard robot fires a shot continuously. The bodies of guard robot are modelled in flexible multi-body. The results of its analysis is compared with results of rigid bodies. The tools of computer simulation is used in Multi-body dynamics program.

  • PDF

디스크와 픽업을 고려한 광디스크드라이브의 충격응답해석 (Shock Response Analysis of the Optical Disk Drive in consideration of Disk and Pick up)

  • 신은정;장영배;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.183-188
    • /
    • 2004
  • Nowadays optical disc drives have become necessary. As the equipment is popular to use, competition of price and rotating rate have been harder and harder. Shock response analysis for the optical disk drives is rarely studied. In this paper the optical disk drive has 5-DOF system and each motion is presented by using Lagrange Equation. As the motion of the Pick up lens is important to read and write data, it needs to consider the pickup and disk. The lumped parameter model is compared with finite element model in order to make sure of the result. Results of the shock response analysis from various shock inputs are gotten.

  • PDF

MIL-S-901D 충격시험과 과도응답해석을 이용한 DDAM 특성에 관한 연구 (Study for Characteristics of DDAM using MIL-S-901D Shock Test and Transient Response Analysis)

  • 송오섭;김룡
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1132-1139
    • /
    • 2006
  • Non-contact underwater explosions against surface ship could cause extensive equipment damage during wartime service. Thus, the need to develop methods for the design of shock resistant equipment structures and systems was strongly established. In analytical methods, DDAM(Dynamic Design and Analysis Method) and transient repsonse method are used for ship shock design. In this paper, to analyze the characteristics of DDAM, medium weight shock test, DDAM and transient response analysis for missile system equipment are performed.

수치적 시뮬레이션과 충격 시험을 통한 수직방향 진동절연 완충기 설계 및 성능 평가 (Design and Performance Evaluation of the Vibration Absorber of Vertical Direction Using Numerical Simulation and Shock Test)

  • 박상길;방승우;권오철;이정윤;오재응
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.558-563
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc' spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock Isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

수치 모델링과 충격 시험을 통한 수직방향 진동절연 완충기의 성능 평가 (Performance Evaluation of the Vibration Absorber of Vertical Direction using Numerical Modeling and Shock Test)

  • 박상길;방승우;권오철;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.990-993
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc'spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing ho/t ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

  • PDF

조인트를 가진 원통형 구조물의 충격 응답에 관한 실험적 연구 (Experimental Study on the Shock Response of a Cylindrical Structure with the Bolted Joint)

  • 전호찬;송오섭
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.581-589
    • /
    • 2019
  • Guided missiles assembled with the bolted joint are subjected to various shock loading conditions while flying in the air and operating on the ground or platform. Especially, It is important to analyze the effect of the shock load on the structure because it affects the structure for a short duration time while its acceleration magnitude is quite large. In this study, mechanical shock tests on the structure with the bolted joint have been carried out to measure the acceleration changes of the structure against external shock loads by electrical exciter. Variation of dynamic characteristics of a structure with fastening methods and fastening forces has been investigated through Shock Response Spectrum analysis.

고무 마운트로 지지된 2.5인치 하드디스크 드라이브의 충격 응답 해석 (Shock Response Analysis of 2.5in Hard Disk Drive Supported by Rubber Mounts)

  • 설웅;장영배;박노철;박영필
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.215-216
    • /
    • 2005
  • Nowadays, mobility as well as basic performances has been the important performance index of hard disk drive, It makes a system unstable to satisfy mobility, huge storage capacity and high transfer rate. Shock and vibration analysis has been important because hard disk drive could be exposed by external shock and vibration. The probability of this situation has been increasing. In this research, each component and the whole system of 2.5in HDD are made to a finite element model. Results of finite element analysis are compared with the results of experimental modal analysis. Shock analysis is executed for 2.5in hard disk drive.

  • PDF

유한용소법을 이용한 점탄성 감쇠구조물이 포함된 2단 탄성마운트 시스템의 진동/충격응답 해석 (Finite Element Vibration/Shock Analysis of Double Stage Elastic Mounting System with Viscoelastically Damped Foundation Structure)

  • 정우진;류정수;배수룡;함일배
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.508-516
    • /
    • 2000
  • To study the possibility of F.E.M application to vibration and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which has complicated damped sandwich cross-section is analyzed first. And then vibration responses experimental results and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which adopts the above damped structure as intermediate foundation were compared. As a result it is found that F.E.M could be effectively used in analyzing the vibration and shock response of double and multi-stage elastic mounting system with complicated damped foundation structures.

  • PDF

FSI 해석기법을 이용한 에어건 수중발파 응답해석 검증 (Verification of Underwater Blasting Response Analysis of Air Gun Using FSI Analysis Technique)

  • 이상갑;이재석;박지훈;정태영;이환수;박경훈
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.522-529
    • /
    • 2017
  • Air gun shock system is used as an alternative energy source as part of the attempt to overcome the restrictions of economical expense and environmental damage, etc., due to the use of explosives for the UNDerwater EXplosion (UNDEX) shock test. The objectivity of this study is to develop the simulation technique of air gun shock test for the design of model-scale one for the near field non-explosive UNDEX test through its verification with full-scale SERCEL shock test result. Underwater blasting response analysis of full-scale air gun shock test was carried out using highly advanced M&S (Modeling & Simulation) system of FSI (Fluid-Structure Interaction) analysis technique of LS-DYNA code, and was verified by comparing its shock characteristics and behaviors with the results of air gun shock test.

마운트 시스템을 갖는 유연 로터-베어링 시스템의 기초전달 충격에 대한 유한요소 과도응답 해석 (A FE Transient Response Analysis of a Flexible Rotor-Bearing System with Mount System to Base Shock Excitation)

  • 이안성;김병옥;김영철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.387-392
    • /
    • 2007
  • Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems such as warships, submarines and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of rotors, considering the dynamics of mount designs to be applied with. In this study a generalized FE transient response analysis model, introducing relative displacements, is firstly proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model or a Jeffcott rotor. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

  • PDF