• Title/Summary/Keyword: shock proteins

Search Result 371, Processing Time 0.03 seconds

Studies on the Compositon of Protein and lycoprotein in Sarcopiasmic Reticulum of Skeletal Muscle (근소포체의 단백질 및 당단백질 조성에 관한 연구)

  • 박영철
    • The Korean Journal of Zoology
    • /
    • v.33 no.2
    • /
    • pp.191-199
    • /
    • 1990
  • Sarcoplasmic reticulum subfractions were isolated from rabbit sarcoplasmic reticulum vesicles using ultracentrifugation in a continuous sucrose gradient (12.5% 50%) after French pressure treatment. And proteins in sarcoplasmic reticulum were detected by SDS-polyacrylamide gel electrophoresis and glycoproteins were identified through the reaction with 1251-concanavalin A.The electrophoresis showed that sarcoplasmic reticulum contained predominantly $Ca^2$+-AThase and calsequestrin along with high affinity calcium binding protein, intrinsic glycoprotein 160 Kd, 94 Kd, 80 Kd, 38 Kd, 34 Kd and 24 Kd proteins. Among these, the protein of about 80 Kd which has been known as one of heat shock proteins was especially enriched in the terminal cistemae of sarcoplasmic reticulum. Meanwhile, autoradiogram of 125 I-concanavalin A bound to the stained gels showed the distribution of glycoproteins which included 160 Kd glycoprotein, 94 Kd glycoprotein, calsequestrin and intrinsic glycoprotein Among these, the protein of about 160 Kd was especially enriched in longitudial sarcoplasmic reticulum and T-tubule, and the protein of about 94 Kd which has been known as one of glucose-regulated proteins was also enriched in T-tubule and sharply reduced in terminal cistemae.

  • PDF

Development of a Plasmid Vector for Overproduction of $\beta$-Galactosidase in Escherichia coli by Using Genetic Components of groEx from Symbiotic Bacteria in Amoeba proteus

  • Lee, Jung-Eun;Ahn, Eun-Young;Ahn, Tae-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.509-516
    • /
    • 1998
  • A plasmid vector, pXGPRMATG-lac-Tgx, was developed for overproduction of $\beta$-galactosidase in Escherichia coli using the genetic components of groEx, a heat-shock gene cloned from symbiotic X-bacteria in Amoeba proteus. The vector is composed of intragenic promoters P3 and P4 of groEx, the structural gene of lac operon, transcription tenninator signals of lac and groEx, and ColEl and amp'of pBluescript SKII. The optimized host, E. coli DH5$\alpha$, transfonned with the vector constitutively produced 117,310-171,961 Miller units of $\beta$-galactosidase per mg protein in crude extract. The amount of enzyme in crude extract was 53% of total water-soluble proteins. About 43% of the enzyme could be purified to a specific activity of 322,249 Miller units/mg protein after two-fold purification, using two cycles of precipitation with ammonium sulfate and one step of gel filtration. Thus, the expression system developed in this study presents a low-cost and simple method for purifying overproduced $\beta$-galactosidase in E. coli.

  • PDF

Effects of Chaperones on mRNA Stability and Gene Expression in Escherichia coli

  • Yoon, Hyun-Jin;Hong, Ji-Young;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.228-233
    • /
    • 2008
  • Effects of chaperones on mRNA stability and gene expression were studied in order to develop an efficient Escherichia coli expression system that can maximize gene expression. The stability of mRNA was modulated by introducing various secondary structures at the 5'-end of mRNA. Four vector systems providing different 5'-end structures were constructed, and genes encoding GFPuv and endoxylanase were cloned into the four vector systems. Primer extension assay revealed different mRNA half-lives depending on the 5'-end secondary structures of mRNA. In addition to the stem-loop structure at the 5'-end of mRNA, coexpression of dnaK-dnaJ-grpE or groEL-groES, representative heat-shock genes in E. coli, increased the mRNA stability and the level of gene expression further, even though the degree of stabilization was varied. Our work suggests that some of the heat-shock proteins can function as mRNA stabilizers as well s protein chaperones.

Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice

  • Liu, Ai-Ling;Zou, Jie;Liu, Cui-Fang;Zhou, Xiao-Yun;Zhang, Xian-Wen;Luo, Guang-Yu;Chen, Xin-Bo
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • Heat shock proteins play an important role in plant stress tolerance and are mainly regulated by heat shock transcription factors (Hsfs). In this study, we generated transgenic rice over-expressing OsHsfA7 and carried out morphological observation and stress tolerance assays. Transgenic plants exhibited less, shorter lateral roots and root hair. Under salt treatment, over-expressing OsHsfA7 rice showed alleviative appearance of damage symptoms and higher survival rate, leaf electrical conductivity and malondialdehyde content of transgenic plants were lower than those of wild type plants. Meanwhile, transgenic rice seedlings restored normal growth but wild type plants could not be rescued after drought and re-watering treatment. These findings indicate that over-expression of OsHsfA7 gene can increase tolerance to salt and drought stresses in rice seedlings.

High sensitivity of embryonic stem cells to proteasome inhibitors correlates with low expression of heat shock protein and decrease of pluripotent cell marker expression

  • Park, Jeong-A;Kim, Young-Eun;Ha, Yang-Hwa;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.299-304
    • /
    • 2012
  • The ubiquitin-proteasome system is a major proteolytic system for nonlysosomal degradation of cellular proteins. Here, we investigated the response of mouse embryonic stem (ES) cells under proteotoxic stress. Proteasome inhibitors induced expression of heat shock protein 70 (HSP70) in a concentration- and time-dependent manner, and also induced apoptosis of ES cells. Importantly, more apoptotic cells were observed in ES cells compared with other somatic cells. To understand this phenomenon, we further investigated the expression of HSP70 and pluripotent cell markers. HSP70 expression was more significantly increased in somatic cells than in ES cells, and expression levels of pluripotent cell markers such as Oct4 and Nanog were decreased in ES cells. These results suggest that higher sensitivity of ES cells to proteotoxic stress may be related with lower capacity of HSP70 expression and decreased pluripotent cell marker expression, which is essential for the survival of ES cells.

Characterization and Expression in Escherichi coli of Streptococcus pneumoniae FtsH

  • Kim, Hee-Soo;Lee, Jae-Jung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.109-115
    • /
    • 2000
  • FtsH is a membrane-bound, ATP-dependent metalloprotease that is involved in a variety of cellular functions including the regulation of responses to heat and stress shock. Previously, we had cloned and sequenced pneumococcal ftsH gene whose deduced amino acid sequence was very similar to those of several gram-positive bacteria and Escherichia coli, except for the N-terminal domain that was responsible for membrane anchoring. In order to better understand the role of Streptococcus pneumoniae FtsH, we expressed pneumococcal ftsH gene in Escherichia coli. When it was expressed from a strong promoter, $P_{tac}$, a considerable amount of the recombinant FtsH was produced, although the prolonged induction resulted in not only accumulation of breakdown products but also ceasing of the further growth of E. coli host. This indicated that the expression of the exogenous ftsH gene was tightly regulated since the excessive FtsH appeared detrimental to bacterial cells. In Western blotting, the pneumococcal FtsH protein, whether native or recombinant, was reactive to anti-E. coli FtsH serum. The observation that FtsH proteins were well conserved throughout the bacterial kingdom and its expression level was fine-tuned suggests an important role for this protein in the stress adaptation which may be related to infecting process by pneumococci.

  • PDF

Recent advances in NMR-based structural characterization of αB-crystallin and its potential role in human diseases

  • Muniyappan, Srinivasan;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2019
  • ${\alpha}B$-crystallin (${\alpha}BC$) is a member of a small heat-shock protein (sHSP) superfamily and plays a predominant role in cellular protein homeostasis network by rescuing misfolded proteins from irreversible aggregation. ${\alpha}BC$ assembles into dynamic and polydisperse high molecular weight complexes containing 12 to 48 monomers; this variable stereochemistry of ${\alpha}BC$ has been linked to quaternary subunit exchange and its chaperone activity. The chaperone activity of ${\alpha}BC$ poses great potential as therapeutic agents for various neurodegenerative diseases. In this mini-review, we briefly outline the recent advancement in structural characterization of ${\alpha}BCs$ and its potential role to inhibit protein misfolding and aggregation in various human diseases. In particular, nuclear magnetic resonance (NMR) spectroscopy and its complimentary techniques have contributed much to elucidate highly-dynamic nature of ${\alpha}BCs$, among which notable advancements are discussed in detail. We highlight the importance of resolving the structural details of various ${\alpha}BC$ oligomers, their quaternary dynamics, and structural heterogeneity.

Analysis of Poly(3-Hydroxybutyrate) Granule-Associated Proteome in Recombinant Escherichia coli

  • Han Mee-Jung;Park Si-Jae;Lee Jeong-Wook;Min Byoung-Hoon;Lee Sang-Yup;Kim Soo-Jin;Yoo Jong-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.901-910
    • /
    • 2006
  • Poly(3-hydroxybutyrate) [P(3HB)] is a microbial polyester intracellularly accumulated as distinct granules in numerous microorganisms as an energy and carbon storage material. Recombinant Escherichia coli harboring the heterologous P(3HB) biosynthesis genes accumulates large amounts of P(3HB) granules, yet the granule-associated proteins have not been identified. Therefore, this study reports on an analysis of the P(3HB) granule-associated proteome in recombinant E. coli. Fiye proteins out of 7 spots identified were found to be involved in functions of translation, heat-stress responses, and P(3HB) biosynthesis. Two of the major granule-associated proteins, IbpA/B, which are already known to bind to recombinant proteins forming inclusion bodies in E. coli, were further analyzed. Immunoblotting and immunoelectron microscopic studies with IbpA/B antibodies clearly demonstrated the binding and localization of IbpA/B to P(3HB) granules. IbpA/B seemed to play an important role in recombinant E. coli producing P(3HB) by stabilizing the interface between the hydrophobic P(3HB) granules and the hydrophilic cytoplasm. Thus, IbpA/B were found to act like phasins in recombinant E. coli, as they are the major proteins bound to the P(3HB) granules, affect the morphology of the granules, and reduce the amount of cytosolic proteins bound to the P(3HB) granules.

Effects of Short-term Acute Heat Stress on Physiological Responses and Heat Shock Proteins of Hanwoo Steer (Korean Cattle)

  • Baek, Youl-Chang;Kim, Minseok;Jeong, Jin-Young;Oh, Young-Kyoon;Lee, Sung-Dae;Lee, Yoo-Kyung;Ji, Sang-Yun;Choi, Hyuck
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.173-182
    • /
    • 2019
  • This study was performed to evaluate the effect of heat stress on the status of physiological responses, blood parameter, serum T3 and cortisol, and heat shock proteins (HSP 27, 70, and 90) of Hanwoo cattle. Six Hanwoo steers (242.8 ± 7.2 kg of BW) were housed in the climate-controlled respiration chambers. The experiment consisted of 7 days (control; 0 day) at thermoneutral (air temperature (Ta) of 15℃ and relative humidity (RH) of 60%; temperature-humidity index (THI) = 64), and by 3 and 6 days (treatment groups) at heat stress (Ta of 35℃ and RH of 60%; THI = 87). Body temperature of each parts (frank, rump, perineum and foot) and rectal temperature elevated in heat stress groups (3 days and 6 days) than the control group (0 day). Respiration rates increased in 3 days and 6 days (88.5 ± 0.96 bpm and 86.3 ± 0.63 bpm, respectively) from 0 days (39.5 ± 0.65 bpm). Feed intake significantly decreased in heat stress groups (3 days and 6 days, 3.7 ± 0.14 kg and 4.0 ± 0.15 kg, respectively) than the control group (0 day, 5.0 ± 0.00 kg). In addition, final BW significantly decreased in heat stress groups (3 days and 6 days, 211.8 ± 4.75 kg and 215.5 ± 3.50 kg, respectively) than the control group (0 day, 240.0 ± 25.00 kg). However, heat stress has no significant effect on blood parameter, serum T3 and cortisol. Nevertheless, heat stress increased HSPs mRNA expression in liver tissue, and serum concentration of HSPs. Despite Hanwoo cattle may have high adaptive ability to heat stress, our results suggested that heat stress directly effect on body temperature and respiration rate as well as serum and tissue HSPs. Therefore, we are recommended that HSPs could be the most appropriate indicators of Hanwoo cattle response to heat stress.

Influence of metabolizable energy on histology of liver and duodenal villus, microflora, heat shock protein gene in duck under heat stress (대사에너지가 열 스트레스에 노출된 오리의 간, 십이지장 융모, 미생물, 유전자 조절에 미치는 영향)

  • Shin, Jong-Suh;Yang, Boo-Keun;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.613-622
    • /
    • 2017
  • The object of this study was to determine the influence of dietary metabolic energy (ME) on ..... A total of 240 meat ducks Cherry valley (Anas platyrhynchos) were assigned into four treatment groups with a randomized block design for 42 days. The four treatments were: ME 2900 kcal/kg, ME 3000 kcal/kg, ME 3100 kcal/kg, and ME 3200 kcal/kg. There was no difference in liver tissue among the treatments. The duodenal villi and crypt depth length decreased by 10.58% in 2900 compared with ME 3000, but there was no difference between 3100 and 3200. Counts of caecal Latobacillus decreased by 9.47% in 2900 compared to ME 3000, but increased by 2.52 and 3.24% in 3100 and 3200, respectively. Total aerobic bacteria, E. coli and Coliform bacteria were increased by 2900 when compared to ME 3000, but there was no difference between 3100 and 3200. HSP $90-{\alpha}$ among the heat shock proteins (HSPs)-mRNA in the liver was reduced by 48.60% in 2900 compared to ME 3000, while 3100 and 3200 showed no difference or increased.