• Title/Summary/Keyword: shock protein

Search Result 728, Processing Time 0.025 seconds

Immunohistochemical Localization of Heat Shock Protein 70 in the Central Nervous System of Nicotine-treated Rat Embryo (태서 중추신경계의 Heat Shock Protein 70 분포에 대한 Nicotine 영향)

  • 최병태;강호성
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.276-281
    • /
    • 1997
  • This study was investigated to determine whether nicotine causes the morphological changes and expression of heat shock protein(HSP) 70 in the central nervous system of rat embryo. The pregnant rats were injected s.c. twice daily with 3 mg nicotine per 100g body weight from day 0 to 14 of gestation and embryos were removed on gestation day 15. As morphological changes, retardation of cell proliferaton was observed in the telencephalon of nicotine-treated groups and no changes in the other region were found. Minimal HSP 70 was expressed over chole central nervous system was similar between control and nicotine-treated group, the expression of blood cells in the meinges and chroid plexus was significantly greater in nicotine-treated group than in control.

  • PDF

Heat Shock and Cell Cycle Dependence of Cell Surface Proteins in Mouse Tumor Cells (溫熱處理와 細胞週期에 따른 생쥐 腫瘍細胞의 膜表面蛋白質의 變化)

  • Kang, Man-Sik;Kim, Yunhee
    • The Korean Journal of Zoology
    • /
    • v.26 no.3
    • /
    • pp.155-170
    • /
    • 1983
  • The primary concern has been focused on the response and adaptation of mouse fibroblast tumor cells to heat-shock in the level of membrane surface proteins, using two labeling techniques, lactoperoxidase-catalyzed iodination and galactose oxidase-sodium borohydride. Cells arrested in $G_1$ phase exhibited the highest level of LETS protein and high molecular proteins than did cells passing through $G_1/S, S, G_2$ and M, and unsynchronized cells. Confluent cells were found to show an increase in 125K proteins and a decrease in 130K and 100K proteins selectively. The adaptation processes of tumor cells after heat-shock were observed. All the proteins above 80K were reduced immediately after heat-shock, whereas 70K protein increased markedly 24 hours after heat-shock. The 70K protein and high molecular proteins returned to normal level in 48 hours. The 70K protein was found to be trypsin-sensitive and was similarly labeled by galactose-oxidase as well as by lactoperoxidase. It was, therefore, concluded that 70K protein is glycoprotein located on the surface membrane and might be the HSP 70. Possible function of heat-shock protein on the surface membrane and the relation of this protein to differential heat-sensitivity of tumor cells are discussed.

  • PDF

Heat Shock Protein $90{\beta}$ Inhibits Phospholipase $C{\gamma}-1$ Activity in vitro

  • Cho, Sang-Min;Kim, Sung-Kuk;Chang, Jong-Soo
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.419-425
    • /
    • 2006
  • Phospholipase $C-{\gamma}1\;(PLC-{\gamma}1)$ is an important signaling molecule for cell proliferation and differentiation. $PLC-{\gamma}1$ contains two pleckstrin homology (PH) domains, which are responsible for protein-protein interaction and protein-lipid interaction. $PLC-{\gamma}1$ also has two Src homology (SH)2 domains and a SH3 domain, which are responsible for protein- protein interaction. To identity proteins that specifically binds to PH domain of $PLC-{\gamma}1$, we prepared and incubated the glutathione S-transferase(GST)-fused PH domains of $PLC-{\gamma}1$ with COS7 cell lysate. We found that 90 kDa protein specifically binds to PH domain of $PLC-{\gamma}1$. By matrix-assisted laser desorption ionization time of flight-mass spectrometry, the 90 kDa protein revealed to be heat shock protein (Hsp) $90{\beta}$. Hsp $90{\beta}$ is a molecular chaperone that stabilizes and facilitates the folding of proteins that are involved in cell signaling, including receptors for steroids hormones and a variety of protein kinases. To know whether Hsp $90{\beta}$ affects on $PLC-{\gamma}1$ activity, we performed $PIP_2$ hydrolyzing activity of $PLC-{\gamma}1$ in the presence of purified Hsp $90{\beta}$ in vitro. Our results show that the Hsp $90{\beta}$ dose-dependently inhibits the enzymatic activity of $PLC-{\gamma}1$ and further suggest that Hsp $90{\beta}$ regulates cell growth and differentiation via regulation of $PLC-{\gamma}1$ activity.

  • PDF

HSP70 and HSC70 gene Expression in Chironomus Tentans (Diptera, Chironomidae) larvae Exposed to Various Environmental Pollutants: Potential Biomarker for Environmental Monitoring

  • Lee Sun Mi;Choi Jin Hee
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • In order to identify potential biomarkers of environmental monitoring, we evaluated heat shock genes expressions as effects of various environmental pollutants (nonylphenol, bisphenol-A, 17a­ethynyl estradiol, bis(2-ethylhexyl)phthalate, endosulfan, paraquat dichloride, chloropyriphos, fenitrothion, cadmium chloride, lead nitrate, potassium dichromate, benzo[a]pyrene and carbon tetrachloride) on larvae of aquatic midge Chironomus tentans (Diptera, Chironomidae). Heat shock protein 70 gene expression increased in most of chemicals treated larvae compared to control. The response was rapid and sensitive to low chemical concentrations but not stressor specific. In conjunction with stressor specific biomarkers, heat shock protein 70 gene expression in Chironomus might be developed for assessing exposure to environmental stressors in the fresh water ecosystem. Considering the potential of Chironomus larvae as biomonitoring species, heat shock gene expression has a considerable potential as a sensitive biomarker for environmental monitoring in Chironomus.

  • PDF

Thermotolerance Inhibits Various Stress-induced Apoptosis in NIH3T3 Cells

  • Park, Jun-Eui;Lee, Kong-Joo;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • When NIH3T3 cells were exposed to mild heat and recovered at $37^{\circ}C$ for various time intervals, they were thermotolerant and resistant to subsequent stresses including heat, oxidative stresses, and antitumor drug methotrexate which are apoptotic inducers. The induction kinetics of apoptosis by stresses were determined by DNA fragmentation and protein synthesis using $[35^S]$methionine pulse labeling. We investigated the hypothesis that thermotolerant cells were resistant to apoptotic cell death compared to control cells when both cells were exposed to various stresses inducing apoptosis. The cellular changes in thermotolerant cells were examined to determine which components are involved in this resistance. At first, the degree of resistance correlates with the extent of heat shock protein synthesis which were varied depending on the heating times at $45^{\circ}C$ and recovery times at $37^{\circ}C$after heat shock. Secondly, membrane permeability change was observed in thermotolerant cells. When cells prelabeled with $[^{3}H]$thymidine were exposed to various amounts of heat and recovered at $37^{\circ}C$ for 1/2 to 24 h, the permeability of cytosolic $[^{3}H]$thymidine in thermotolerant cells was 4 fold higher than that in control cells. Thirdly, the protein synthesis rates in thermotolerant and control cells were measured after exposing the cells to the same extent of stress. It turned out that thermotolerant cells were less damaged to same amount of stress than control cells, although the recovery rates are very similar to each other. These results demonstrate that an increase of heat shock proteins and membrane changes in thermotolerant cells may protect the cells from the stresses and increase the resistance to apoptotic cell death, even though the exact mechanism should be further studied.

  • PDF

Expression of the Heat Shock Protein Genes in Response to Thermal Stress in the Silkworm Bombyx mori

  • Velu, Dhanikachalam;Ponnuvel, Kangayam. M.;Qadri, Syed. M. Hussaini
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • The expression of heat shock protein genes (Hsp 70, Hsp 40, Hsp 20.8 and Hsp 20.4) against thermal stress in silkworm Bombyx mori was performed through semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Upon exposure of silkworm to two temperature regimes ($38^{\circ}C$ and $42^{\circ}C$), significant change in the expression of Hsp gene was observed as compared to the control. Hsp 70 and Hsp 40 showed increased expression than the small heat shock protein genes Hsp 20.8 and Hsp 20.4. The Hsp 70 showed increased expression during the recovery period as compared to 1 hr thermal treatments ($38^{\circ}C$/1 hr and $42^{\circ}C$/1 hr). Whereas, Hsp 40, Hsp 20.8 and Hsp 20.4 genes showed higher expression level at initial stages that later gradually decrease during recovery period. Tissue specific expression of Hsp 70 showed variation in the level of expression amongst the tissues. The mid gut and fat body tissues showed higher expression than the cuticle and silk gland tissue. The Hsp 70, Hsp 40 gene expression was analyzed in thermotolerant (Nistari) and thermo susceptible silk worm strain (NB4D2) and results showed significant variation in their expression level. The Nistari showed higher expression of Hsp 70 and Hsp 40 genes than the NB4D2. These findings provide a better understanding of cellular protection mechanisms against environmental stress such as heat shock, as these Hsps are involved in an organism thermotolerance.

Expression of the Heat Shock Proteins and Glucose-Regulated Proteins during Phorbol 12-Myristate 13-Acetate-Induced Megakaryocytic Differentiation of K562 Erythroleukemia Cells (K562 백혈구암 세포의 Phorbol 12-Myristate 13-Acetate에 의한 대핵세포로의 분화과정에서 Heat Shock Proteins와 Glucose-Regulated Proteins의 발현)

  • 이창훈;김우진;김종묵;한송이;김정락;한규형;임운기;유미애;강호성
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.47-53
    • /
    • 1996
  • We examined the expression of the heat shock proteins (HSPs) and glucose-regulated proteins (GRPs) during phorbol 1 2-myristate 1 3-acetate (PMA)-induced megakaryocytic differentiation of human er"'throleukemia K562 cells. PMA-treated K562 cells showed a cell growth arrest and alteration in morphology and patterns of gpllIa and c-myc expression, characteristic of megakaryocytic differentiation. During the megakaryocytic differentiation, HSP9OA, HSP9OB, and HSP28 mRNA and protein levels markedly decreased, while GRP78/B and GRP94 mRNA levels were enhanced. On the other hand, HSP7OA and HSP7OB mRNA levels were reduced, but HSP7O protein levels were not changed by PMA treatment. These results suggest specific roles for the HSPs and GRPs in K562 cell proliferation and megakaryocic differentiation.tion.

  • PDF

Inhibitory Effects of Tannic Acid on the Skin Toxicity and Heat Shock Protein Induction by UVB Irradiation in Hairless Mouse (자외선 B 파로 유도된 Hairless Mouse에서 타닌의 피부 독성 억제효과 및 Heat Shock Protein 70의 생성억제 효과)

  • 이세윤;이민경;장동덕;안령미;안형수
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.79-86
    • /
    • 1997
  • Inhibitory effects of tannic acid on skin toxicity and heat shock protein induced by UVB were investigated. Tannic acid was administered either topically or orally for 3 days to hairless mice, which were previously irradiated with UVB. UVB was found to cause skin erythema . However, the skin erythema was decreased when tannic acid was administered either topically or orally. The heat shock proteins, Hsp-78 kDa and 70 kDa, were induced by UVB irradiation, but the induction was decreased by treatment of tannic acid in both topically and orally administered groups. The hsp induction was more prominent in orally administered groups than in topically administerd groups. However, the difference between two groups was not statistically significant. The route of administrations, topical and oral, does not affect the activity of tannic acid. In the skin tissue observation, tannic acid regenerated the epithelial cells with 7-9 cell layers which were injured by UVB. In conclusion, tannic acid has an ability to protect against UVB irradiation and regenerate the skin.

  • PDF

Recombinant Expression, Isotope Labeling, and Purification of Cold shock Protein from Colwellia psychrerythraea for NMR Study

  • Moon, Chang-Hun;Jeong, Ki-Woong;Kim, Hak-Jun;Heo, Yong-Seok;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2647-2650
    • /
    • 2009
  • Cold shock proteins (Csps) are a subgroup of the cold-induced proteins on reduction of the growth temperature below the physiological temperature. They preferentially bind to single-stranded nucleic acids to translational regulation via RNA chaperoning. Csp plays important role in cold adaptations for the psychrophilic microorganism. Recently, Cold shock protein from psychrophilic bacteria, Colwellia psychrerythraea (CpCsp) has been identified. Three dimensional structures of a number of Csps from various microorganisms have been solved by NMR spectroscopy or X-ray crystallography, but structures of psychrophilic Csps were not studied yet. Therefore, cloning and purification protocols for further structural study of psychrophilic Csp have been optimized in this study. CpCsp was expressed in E. coli with pET-11a vector system and purified by ion exchange, size exclusion, and reverse phase chromatography. Expression and purification of CpCsp in M9 minimal media was carried out and $^{15}N$-labeled proteins with high purity over 90% was obtained. Further study will be carried out to investigate the tertiary structure and dynamics of CpCsp.