• Title/Summary/Keyword: shock model

Search Result 1,042, Processing Time 0.023 seconds

Identifying Three-Dimensional Hydraulic Characteristics of the Sea Region Under Combined Tidal Current and Shock Waves (조류와 충격파가 혼재한 해역의 3차원적 수리특성 분석)

  • Kang, Min Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.339-346
    • /
    • 2009
  • In this study, the flow characteristics of the sea region, where tidal current and shock waves are combined, are identified using a three-dimensional numerical model (Princeton Ocean Model, POM). The model is adopted and applied for simulating the flows of the sea region near the open sections during the seadike closure work of Sihwa Seadike which was closed in 1994. The simulation results show that the shock waves with high velocities propagate through the sections toward the inside and outside of the seadike during the periods of the spring and ebb tides, respectively. It is found that the phenomena of flow separation occur near the shock waves; as the shock waves extend to wider zones after passing the sections, their effects on the tidal current become weak. In addition, the longitudinal velocity profiles of the flows are revealed to be affected by the shock waves. For all the simulations, at the ebb tide, the drawdown of the water levels occurs in front of the open section, respectively, especially, hydraulic jump occurs when simulating the case of maximum difference in water level between the inside and outside of the seadike. As a result, it is thought that the flow characteristics of the sea region dominated by shock waves need to be identified employing three-dimensional analysis approach, which is expected to provide the information for ocean engineering works and facility management.

CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE IN NONEQUILIBRIUM HYPERSONIC FLOW (비평형 극음속 유동에서 구에 대한 충격파 이탈거리 계산)

  • Furudate, M. Ahn
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.69-74
    • /
    • 2012
  • Hypersonic flowfields over a sphere is calculated by using a nonequilibrium flow solver. The flow solver features a two-temperature model and finite rate chemical reaction models to describe nonequilibrium thermochemical processes. For the purpose of validation, the calculated shock stand-off distance is compared with the experimental data which is measured in a ballistic range facility. The present nonequilibrium calculation well reproduced the experimental shock stand-off distance in the cases where the experimental flowfields are expected to be nearly equilibrium, as well as in the cases to be nonequilibrium flowfields in the velocity range 4000 to 5500 m/s.

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, Guee-Won;Jeong, Eun-Ju;Lee, Byeong-Ro;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.32-36
    • /
    • 2002
  • A numerical study was carried out to investigate combustion phenomena in a model Scramjet engine, which had been experimentally studied at the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was Mach number 2.0 and the total temperature of hot flow was 1800K. Equivalence ratio was set to be 0.26 which is higher than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, G.W.;Jeung, I.S.;Jeong, E.J.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.127-132
    • /
    • 2001
  • A numerical study was carried out to investigate the combustion phenomena in a model Scramjet engine, which had been experimentally studied in the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was 2.0 in Mach number and the total temperature of hot flow was 1800K. Equivalence ratio was set to be rather higher value of 0.26 than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

Shock Response Analysis of the Optical Disk Drive in consideration of Disk and Pick up (디스크와 픽업을 고려한 광디스크드라이브의 충격응답해석)

  • 신은정;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.183-188
    • /
    • 2004
  • Nowadays optical disc drives have become necessary. As the equipment is popular to use, competition of price and rotating rate have been harder and harder. Shock response analysis for the optical disk drives is rarely studied. In this paper the optical disk drive has 5-DOF system and each motion is presented by using Lagrange Equation. As the motion of the Pick up lens is important to read and write data, it needs to consider the pickup and disk. The lumped parameter model is compared with finite element model in order to make sure of the result. Results of the shock response analysis from various shock inputs are gotten.

  • PDF

Cosmological shocks and the cosmic gamma-ray background

  • Ma, Renyi;Ryu, Dong-Su;Kang, Hye-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.83.2-83.2
    • /
    • 2010
  • During the formation of cosmic web, collisionless shock waves are produced around and inside the substructures. In these shock waves electrons and ions are accelerated to such high energies that they can produce gamma rays in several ways. Many authors have studied the contribution of shock-induced radiation to the cosmic gamma-ray background. However not all the important physical processes are included in their calculation. By considering more complete physical process, we re-investigate the problem. In our model, the energy distribution of the cosmic rays (CRs) are calculated by widely accepted diffusive shock acceleration model, both primary and secondary CR electrons are included, both inverse Compton scattering and bremsstrahlung process are considered. The difference of the results are discussed.

  • PDF

Diffusive Shock Acceleration with Self-Consistent Injection

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.293-295
    • /
    • 2001
  • A numerical scheme that incorporates a self-consistent cosmic-ray (CR, hereafter) injection model into the combined gas dynamics and CR diffusion-convection code has been developed. The hydro/CR code can follow in a very cos-effective way the evolution of CR modified shocks by adopting subzone shock-tracking and multi-level Adaptive Mesh Refinement techniques. The injection model is based on interactions of the suprathermal particles with self-generated MHD waves in quasi-parallel shocks. The particle injection is followed numerically by filtering the diffusive flux of suprathermal particles across the shock to upstream region according to a velocity-dependent transparency function, which represents the fraction of leaking suprathermal particles. In the strong shock limit of Mach numbers $\ge$20, significant physical processes such as the injection and acceleration seem to become independent of M, while they are sensitively dependent on M for M < 10. Although some particles injected early in the evolution continue to be accelerated to higher energies, the postshock CR pressure reaches a time asymptotic value due to balance between acceleration and diffusion of the CR particles.

  • PDF

Experimental Study of a Scramjet Engine Intake in a Storage Heater Type Hypersonic Wind Tunnel (축열식 가열기형 풍동을 이용한 스크램제트 엔진 흡입구 실험연구)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.463-466
    • /
    • 2010
  • A scramjet engine intake model was tested with a storage air heater type hypersonic wind tunnel. In test results, there is no large performance change with the variation of the sidewall configurations. In the isolator performance analysis, pressure distribution of oblique shock train and normal shock train was observed. Unstart limit of the model was also confirmed.

  • PDF

Test-particle Solutions for Electron Acceleration in Low Mach Number Shocks

  • Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2020
  • We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and reacceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model.

  • PDF

A Study on the Electric Shock Characteristics Using a Human Body Model (인체모델을 이용한 감전특성에 관한 연구)

  • Jung, Yeon-Ha;Lee, Jae-Wha;Jang, Tae-Jun;Roh, Young-Su;Kwak, Hee-Ro;Choi, Chung-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.277-280
    • /
    • 2004
  • As electric shock accident take place frequently, electrical safety is extremely important to prevent them. This paper describes the characteristics of electric shock. In order to examine it, an experimental apparatus including a model of a human body is fabricated and the magnitude of the voltage held by the model is measured under several conditions as follows;(1) the model is not contacted to an electric pole and a step voltage does not exist. (2) the model is not contacted to an electric pole and a step voltage exists. (3) the model is contacted to an electric pole and a step voltage does not exist (4) the model is contacted to an electric pole and a step voltage exists. As a result of the experiment it is found that the voltage held by the model depends on the step voltage as well as the voltages applied to the electric pole.

  • PDF