• Title/Summary/Keyword: shock formation

Search Result 177, Processing Time 0.026 seconds

Mechanisms of microparticle propulsion by laser ablation

  • Gojani, A.B.;Menezes, V.;Yoh, J.J.;Takayama, K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.837-841
    • /
    • 2008
  • Propulsion of gene coated micro-particles is desired for non-intrusive drug delivery inside biological tissue. This has been achieved by the development of a device that uses high power laser pulses. The present paper looks at the mechanisms of micro-particle acceleration. Initially, a high power laser pulse is focused onto the front side of a thin aluminium foil leading to its ablation. The ablation front drives a compression wave inside the foil, thus leading to the formation of a shock wave, which will later reflect from the rear side of the foil, due to acoustic impedance mismatch. The reflected wave will induce an opposite motion of the foil, characterized by a very high speed, of the order of several millimeters per microsecond. Micro-particles, which are deposited on the rear side of the foil, thus get accelerated and ejected as micro-projectiles and are able to penetrate several hundreds of micrometers inside tissue-like material. These processes have been observed experimentally by using high-speed shadowgraphy and considered analytically.

  • PDF

Induction of Heat Shock Protein 70 Inhibits Tumor Necrosis $Factor{\alpha}-induced$ Lipid Peroxidation in Rat Mesangial Cells (Heat Shock Protein 70이 흰쥐 배양 혈관간 세포에서 관찰되는 $TNF{\alpha}$에 의한 지질과산화에 미치는 보호 효과)

  • Ha, Hun-Joo;Park, Young-Mee;Ahn, Young-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.323-331
    • /
    • 1995
  • Monocyte/macrophage infiltration is the well known initial features associated with the development of glomerular disease including non-immune mediated nephropathy. Tumor necrosis factor ${\alpha}(TNF{\alpha})$, a cytokine produced primarily by monocyte/macrophage, exhibits similar effects as observed at the initial stages and during the progression of glomerular injury. Because the mesangial cells are target cells for glomerular injury, the present study examined the effect of $TNF{\alpha}$ on glomerular mesangial cell membrane lipid peroxidation as an index of cytotoxicity attributing to $TNF{\alpha}$. Primary culture of rat mesangial cell was established by incubation of glomeruli isolated from male Sprague-Dawley rat kidneys utilizing a standard sieving method. The levels of lipid peroxides in the mesangial cells were quantitated by malondialdehyde- thiobarbituric acid adduct formation. During an 8 hour incubation at $37^{\circ}C$, $TNF{\alpha}$ at 10 to 10,000 units/ml increased the levels of lipid peroxides dose dependently. Western blot analysis demonstrated that a short thermal stress induced heat shock response and the synthesis of heat shock protein 70(hsp70) in this mesangial cells. Further, this induction of hsp 70 prevented increase of lipid peroxides in the mesangial cells exposed to $TNF{\alpha}$. These data suggest that $TNF{\alpha}-induced$ lipid peroxidation in the mesangial cells may have pathophysiological relevance to glomerular injury and prior induction of heat shock response may play a role in the cellular resistance against $TNF{\alpha}-induced$ glomerular injury.

  • PDF

Ultrasonic flushing 기법에 의한 유류오염토양의 복원에 관한 실험연구

  • Jeong, Ha-Ik;Oh, In-Gyu;Kim, Sang-Geun;Lee, Yong-Su;Yoo, Jun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.13-17
    • /
    • 2002
  • Ultrasonic waves have several mechanical, chemical, and biological effects on a saturated soil medium. Their mechanical effects, popularly known as cavitation. Cavitation is the rapid and repeated formation, and resulting implosion, of imcrobubbles in a liquid, resulting in the propagation of microscopic shock waves. In a soil-liquid system, their mechanical effects generate high differntial fluid-particle velocities and microscopic shock waves. The velocity perturbations are capable of dislodging oil in the system by overcoming the forces binding oil to sand particles. In this study, a series of laboratory experiments involving the simple flushing and ultrasonic flushing were carried out. An increase in permeability and oil removal rate were observed in ultrasonic flushing tests. Some practical implications of these results are discussed in terms of technical feasibility of in situ implementation of ultrasonics.

  • PDF

Experimental Study on the Line Shock Wave in Explosive Welding (폭발용접에서 선형 충격파에 관한 실험적 연구)

  • 김청균;문정기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1108-1114
    • /
    • 1992
  • In this paper results from experimental studies on the line wave detonation of explosive welding were presented. Using the ultra high speed comera, the ling wave generation during the bonding, process of composite materials was observed with an equilateral triangle lens. Experimental results confirmed the line wave formation of the shock front. And the results indicated the effectiveness of the ling wave detonation method in the explosive welding of similar or dissimilar metals.

Spitzer IRS mapping of L1251B

  • Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • L1251B, which was revealed as a small group of protostars by the Spitzer Space Telescope (SST), presents a great site of studying chemical evolution in gas and ice as well as various dynamical processes associated with star formation (infall, rotation, and outflow). We have mapped L1251B with the Infrared Spectrograph (IRS) aboard the SST to study the chemical distribution in the phases of gas and ice and the dynamical feature related to shock in the region. Various atomic lines and the $H_2$ pure rotational lines, which trace different shock velocities, were detected. In addition, the distribution of the water and $CO_2$ ices hints variety of the ice desorption mechanism in L1251B.

  • PDF

PRINCIPLES OF AN ACTIVE NOISE AND VIBRATION CONTROL SYSTEM CONSTRUCTION FOR SHIP

  • Maslov, Viatcheslav L.;Soloveitchik, Leonid I.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.860-863
    • /
    • 1994
  • Main sources of increased vibrations and air noise on ship are main and auxiliary engines and ship ducts. The various ways of transfer of vibration energy and air noise in passenger cabin of a vessel require, in general case, of various methods of attenuation. The transfer of vibration energy from engines through a support requires, alongside with shock-absorbers, availability active shock-absorbers. The transfer of vibration energy and hydrodynamic noise on ship ducts requires availability, alongside with flexible muffler, active mufflers. The availability of air noise from working equipment can require, along with absorbent covers, of space systems of active noise control. In the given article it is spoken about the unified approach to formation of the block-diagram of active noise and vibration control. The complex approach permits to receive additional efficiency in reduction of noise in passenger cabin of vessels.

  • PDF

Analysis of the Correlation between Expressions of HSP90α, HSP90β, and GRP94, and the Clinicopathologic Characteristics in Tissues of Non-Small Cell Lung Cancer Patients (비소세포 폐암 환자 조직에서 Hsp90α, Hsp90β, GRP94의 발현과 임상병리학적 특성과의 상관관계 분석)

  • Kim, Mi Kyeong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.460-469
    • /
    • 2017
  • Heat shock proteins (HSPs) are induced as a self-defense mechanism of cells when exposed to various external stresses, such as high fever, infection, free radicals, and heavy metals. They affect the prognosis in the process of tumor formation. HSP is classified into four families: HSP27, HSP60, HSP90, and HSP100, depending on molecular weight. Heat shock protein 90 (HSP90), a molecular chaperone, plays an important role in the cellular protection against various stressful stimuli and in the regulation of cell cycle progression and apoptosis. In the present study, we assessed the differential expression of HSP90 family proteins in non-small cell lung cancer (NSCLC), and the correlation of their expression levels with clinicopathologic factors and patient survival rates. The result of this study can be summarized as follows; $HSP90{\alpha}$ showed higher expression in patients with no lymphovascular invasion (p=0.014). $HSP90{\beta}$ showed a higher expression of squamous cell carcinoma (p=0.003), and an over expression of glucose-related protein (GRP94) was significantly associated with poor differentiation (p=0.048). However, none of the HSP90 proteins showed a significant association with the survival status in patients with NSCLC. This study also indicates that $HSP90{\alpha}$ might contribute more to the carcinogenesis of NSCLC than $HSP90{\beta}$, and GRP94 and isoform selectivity should be considered when HSP90 inhibitors are studied or utilized in the treatment of NSCLC.

Study of Separation Mechanism According to the Constraint Condition of Explosive Bolts (폭발볼트의 구속환경에 따른 분리메커니즘 연구)

  • Jeong, Donghee;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Explosive bolt is one of separation device that uses high explosive charge, and is separated by pressure formed by an explosion and the resulting shock waves. Explosive bolt having such a mechanism would have to be designed to minimize shock and debris formation generated during separation. In this study, separation tests were carried out with distance as variable for restraining the explosive bolt (Air Gap). Bolt release and its separating shape with variation of air gap is observed, and we used accelerometer to measure the shock wave transmitted through a bound object. In addition, separation behavior of explosive bolt is analyzed using ANSYS AUOTODYN program. By comparing the results of previously performed experiments and analysis, we could confirm the effects of air gap to the release behavior of explosive bolt, and decide optimum constraining environment for specific separation bolts.

Induction of Stress Proteins in the SCK Tumor Cells (SCK종양 세포에서Stress Protein의 합성유도)

  • 강만식;김경희
    • The Korean Journal of Zoology
    • /
    • v.31 no.3
    • /
    • pp.157-164
    • /
    • 1988
  • SCK tumor cells were exposed to heat shock or several sulihydryl-reacting agents such as iodoacetamide(IAA), zinc chloride(Zn), and 2-mercaptoethanol(ME). Stress proteins induced by these agents were examined and the relationship between the induction of stress proteins and the production of abnormal proteins was discussed. Based on the present experiments, two classes of intracellular pathways for the induction of stress proteins were defined; one dependent on and the other independent of protein synthesis. The presence of cycloheximide during the induction period blocked the formation of stress proteins in the cells exposed to Zn or ME, but not in those exposed to heat shock or IAA.Therefore, stress protein seems to be induced either by denaturation of pre-existing mature proteins (e.g., heat shock or IAA) or by newly synthesized abnormal proteins(e.g., Zn or ME). In conclusion, it is ilkely that the production of abnormal proteins by stresses triggers stress protein induction. In addition, it was found that the cells exposed to IISP and GRP inducers simultaneously responded to more strong stress among several stresses encountered.

  • PDF

Effects of Aging on Properties of MgO-Partially Stabilized Zirconia (마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과)

  • 정형진;오영제;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.243-250
    • /
    • 1987
  • The effects aging on some properties and thermal-shock behavior of zirconia partially stabilized with 9 mol% MgO (9MZ) were studied. 9MZ specimens were aged over $1200^{\circ}$-$1400^{\circ}C$ for 12hours subsequently, after sintering at $1650^{\circ}C$ for 4 hours. Fracture strength(both before and after thermal-shock test), linear thermal expansion, monoclinic fraction and phase transition by XRD, density, galvanic potential and microstructure were measured. Quantitative chemical analysis around the grain-boundary of the specimen aged at $1350^{\circ}C$ was also conducted by EDX. The aging of 9MZ specimen causes a thermal decomposition of cubic-$ZrO^{2}$ into the formation metastable tetragonal-$ZrO^{2}$ and MgO. The former increases the residual strength after thermal-shock test and the latter improves the thermal-shock resistance due to thermal conduction through the continuous magnesia phase and the formation of monoclinic phase content in matrix were increased with decreasing the aging temperature from $1400^{\circ}C$ to $1200^{\circ}C$. Galvanic potential of the aged specimen exhibited a proper emf characteristic.

  • PDF