Proceedings of the Korean Society of Propulsion Engineers Conference
/
2012.05a
/
pp.350-355
/
2012
Past few years have seen the growing importance of micro shock tubes in various engineering applications. A pharma ballistic technique is one such application which uses micro shock tube to accelerate drug particles and penetrate into skin, thus avoiding the usual injection drug delivery system. But for the efficient design of such instruments requires the detailed knowledge of shock characteristics and flow field inside a micro shock tube. Due to many factors such as boundary layer, low Reynolds number and high Knudsen number shock propagation inside micro shock tubes will be quite different from that of the well established macro shock tubes. In the present study, experimental studies were carried out on a micro shock tube of 3 mm diameter to investigate flow characteristics and shock propagation. Pressure values were measured at different locations inside the driven section. From the experimental values other parameters like shock velocity, shock strength were found and shock wave diagram was constructed.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.16
no.11
s.116
/
pp.1108-1114
/
2006
Underwater acoustic transducers can be exposed to a underwater explosive shock caused by various types of underwater weapon. So, a robust anti-shock design is required for transducers to endure the underwater explosive shock. To check the anti-shock characteristics of a transducer, underwater explosive shock test is needed. The conditions of underwater explosive shock test are set up referring to various oversea explosive shock test specifications, and the explosive shock pressure values are calculated according to those conditions. Transient analyses art: carried out for two kinds of underwater acoustic transducer model to verify the anti-shock characteristics. The applied model has robust anti-shock characteristics enough to endure the explosive shock up to 2300 psi. In the future, the transducer design should be certified through the fields test, and modified if needed.
Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.
Journal of the Korean Society of Propulsion Engineers
/
v.16
no.5
/
pp.74-80
/
2012
Past few years have seen the growing importance of micro shock tubes in various engineering applications like micro combution, micro propulsion, particle delivery systems. But in order to efficiently apply Micro Shock Tube to such areas require the detailed knowledge of shock characteristics and flow field inside a micro shock tube. Due to many factors such as boundary layer, low Reynolds number and high Knudsen number shock propagation inside micro shock tubes will be quite different from that of the well established macro shock tubes. In the present study, experimental studies were carried out on micro shock tubes of two diameters to investigate flow characteristics and shock propagation. Pressure values were measured at different locations inside the driven section. From the experimental values other parameters like shock velocity, shock strength were found and shock wave diagram was constructed.
Kim, Dong Wook;Kim, Tae Ho;Yoon, Young Bin;Kim, Heuy Dong
Transactions of the Korean Society of Mechanical Engineers B
/
v.41
no.9
/
pp.615-622
/
2017
A normal shock wave is initially formed in the shock tube that migrates towards the closed end of the tube, which, in turn, leads to the reflection of shock. Due to the interaction of the reflected shock with the boundary layer, bifurcation of the shock wave takes place. A shock train will be generated after the bifurcated shock wave approaches the contact surface. Until now, only a few studies have been conducted to investigate this shock train phenomenon inside the shock tube. For the present study, a CFD analysis has been performed on a two dimensional axisymmetric model of a shock tube using unsteady, compressible Navier-Stokes equations. In order to investigate the detailed characteristics of the shock train phenomenon, quantitative studies have been performed by varying shock tube length, diameter under fixed diaphragm, and pressure ratio inside a shock tube.
The shock performance of hard disk drives has been a serious issue for portable computers and AV application HDD. Focusing on the motion of an actuator, we investigated non-operational shock mechanism and studied several parameters that affect the shock performance by experimental analysis. It was found that there are two important factors fort the actuator to endure high shock revel. One is a shock transmissibility and the other is a beating between the arm blade and the suspension. To generalize the shock transmissibility, the concept of shock response spectrum was introduced. The shock response spectrum of the actuator system was obtained experimentally and compared with that of an analytical single degree of freedom model. It was found that there was a good agreement. The first bending natural frequency of the arm blade was found to be the most important factor for the low shock transmissibility. By applying the shock response spectrum and avoiding the beating, we could design an actuator of high shock performance.
Journal of the Korea Institute of Military Science and Technology
/
v.21
no.3
/
pp.342-348
/
2018
The important issue of equipment installed in maritime weapon system is shock survivability against underwater explosion(UNDEX). If the shock survivability of equipment should not be guaranteed, the successful mission also could not be achieved. For that reason, the shock-resistance of each equipment under UNDEX environment should be demonstrated before deployment at combat field. However, the actual UNDEX test on the ocean is too expensive to conduct. Also, it has diverse dangerous factors. The main characteristic of UNDEX is a dual-pulse shock. The vertical shock test machine able to simulate dual pulse shock signal on the ground will be introduced in this paper. The dual-pulse shock signal presented in certain shock standard was achieved with this shock-test machine on the ground. The analytical procedure to set a test condition was verified by comparing simulation result with experiment result.
The shock wave is deformed and the vortex is elongated simultaneously during the shock-vortex interaction. More precisely, the shock wave is deformed to a S-shape, consisting of a leading shock and a lagging shock by which the corresponding local vortex flows are accelerated and decelerated, respectively: the vortex flow swept by the leading shock is locally expanded and the one behind the lagging shock is locally compressed. As the leading shock escapes the vortex in the order of microseconds, the expanded flow region is quickly changed to a compression region due to the implosion effect. An induced shock is developed here and propagated against the vortex flow. This happens for a strong vortex because the tangential flow velocity of the vortex core is high enough to make the induced-shock wave speed supersonic relative to the vortex flow. For a weak shock, the vortex is basically subsonic and the induced shock wave is absent. For a vortex of intermediate strength, an induced shock wave is developed in the supersonic region but dissipated prematurely in the subsonic region. We have expounded these three shock-vortex interaction patterns that depend on the vortex flow regime using a third-order ENO method and numerical shadowgraphs.
Journal of the Korean Society of Propulsion Engineers
/
v.17
no.3
/
pp.37-46
/
2013
Recent years have witnessed the use of micro shock tube in various engineering applications like micro combustion, micro propulsion, particle delivery systems etc. The flow characteristics occurring in the micro shock tube shows a considerable deviation from that of well established conventional macro shock tube due to very low Reynolds number and high Knudsen number effects. Also the diaphragm rupture process, which is considered to be instantaneous process in many of the conventional shock tubes, will be crucial for micro shock tubes in determining the near diaphragm flow field and shock formation. In the present study, an axi-symmetric CFD method has been applied to simulate the micro shock tube, with Maxwell's slip velocity and temperature jump boundary conditions. The effects of finite diaphragm rupture process on the flow field and the shock formation was investigated, in detail. The results show that the shock strength attenuates rapidly as it propagates through micro shock tubes.
Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
/
2000.02a
/
pp.43-47
/
2000
Two modes of shock waves, a compression shock wave and a thermal shock wave, propagating in He II have been investigated. The shock waves are at a time generated by the impingement of a gasdynamic shock wave onto a He II free surface in the newly developed superfluid shock tube facility. Superconductive temperature sensors, piezo-type pressure transducers and visualization photograph were used for the measurement of them and the phenomena induced by them were investigated in detail. It is found that the compression by a compression shock wave in He II causes temperature drop because He II has negative thermal expansion coefficient. the thermal shock wave is found to be of a single triangular waveform with a limited shock strength. The waveform is similar to that generated by stepwise strong heating from an electrical heater for relatively long heating time. In the experiments at the temperatures near the lambda temperature, no thermal shock wave is sometimes detected in shock compressed He II. It can be understood that shock compression makes He Ii convert to He I in which no thermal shock wave is excited.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.