• 제목/요약/키워드: shipboard noise

검색결과 67건 처리시간 0.022초

선박소음 예측기술의 현황과 발전방향 (Present and Future of the Shipboard Noise Prediction)

  • 김재승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.477-478
    • /
    • 2010
  • It was in the mid-1980s when the shipboard noise analysis was introduced to the Korean shipbuilding industry. Since then through the continued efforts of the industries in the last decades, native computational codes dedicated to the shipboard noise prediction have been developed based on empirical formula and/or sophisticated theories such as SEA and PFM. This paper addresses some problems in dealing with predicting shipboard noise and the way how to overcome the uncertainties in the prediction.

  • PDF

선박내의 소음 및 진동에 기초한 선상근무 환경의 평가 (Evaluation of Shipboard Working Environment based on Noise and Vibration in Ships)

  • 고창두;김상현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 추계공동학술대회논문집
    • /
    • pp.75-80
    • /
    • 2002
  • 연안 선박의 선상근무 환경은 육상근무 환경에 비하여 매우 열악하여 선상근무 기피와 선원 고령화의 원인이 되고 있다. 특히 선박내 소음은 난청과 같은 직업병을 유발시키는 원인이 된다. 따라서 안락한 선상근무 환경 및 거주 환경의 확보를 통하여 선상근무 피로도를 경감시키는 것이 필요하다. 본 연구에서는 먼저 선박내 소음 및 진동의 실선 계측을 통하여 선상근무 환경을 체계적으로 평가한다. 그리고 선상근무 환경의 평가 겉과에 기초하여 선상근무 피로도 경감대책을 제안한다.

  • PDF

연안 소형선박내의 소음 및 진동에 기초한 선상근무 환경의 평가 (Evaluation of Environmental Conditions on Board in term of Noise and Vibration in Coastal Small-sized Ships)

  • 고창두;김상현
    • 한국항해항만학회지
    • /
    • 제27권1호
    • /
    • pp.15-30
    • /
    • 2003
  • 연안 경비함정의 선상근무 환경은 육상근무 환경에 비하여 매우 열악하여 선상근무 기피와 성원고령화의 원인이 되고 있다. 특히 선박내 소음은 난청과 같은 직업병을 유발시키는 원인이 된다. 따라서 안락한 선상근무 환경 및 거주 환경의 확보를 통하여 선상근무 피로도를 경감시키는 것이 필요하다. 본 연구에서는 먼저 선박내 소음 및 진동의 실선 계측을 통하여 선상근무 환경을 체계적으로 평가한다. 그리고 선상근무 환경의 평가 결과에 기초하여 선상근무 피로도 경감대책을 제안한다

선박 소음 예측 및 제어 대책 (Noise Prediction and Control for Onboard Ships)

  • 주원호;김동해
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.7-14
    • /
    • 2006
  • In recent years, shipboard noise control is attracting increasing attention to human environmental conditions and crew's opportunity for rest and recreation with work on board. In order to minimize the noise levels, careful attention have to be paid by the experts from initial design stage to the delivery. This paper describes the outlines of shipboard noise control including general characteristics of shipboard noise, measurement, evaluation, prediction, and control measures considering the noise transmission mechanism from source to receiver space.

  • PDF

SEA에 의한 실선소음 예측 정도에 관한 고찰 (On the Accuracy of Shipboard Noise Prediction Using SEA)

  • 김재승;강현주;김현실;김상렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.849-854
    • /
    • 2000
  • Statistical energy analysis is suitable for shipboard noise prediction in many respects. It could effectively model the large and complicated ship structures for noise analysis. This paper introduces the procedure of SEA for shipboard noise analysis gained from author's experiences in the past few years. Also, prediction accuracies of shipboard noise analysis using statistical energy analysis are discussed. It is found that the prediction results could be much improved when using the actual measured data of source levels and material properties such as loss factors, absorption coefficients and etc.

  • PDF

함정탑재장비 진동 측정불확도 추정 (Estimation of Uncertainty in Vibration Measurement of Shipboard Equipment)

  • 박성호;이경현;한형석
    • 한국소음진동공학회논문집
    • /
    • 제24권7호
    • /
    • pp.509-516
    • /
    • 2014
  • This paper proposes estimation model of uncertainty in vibration measurement of shipboard equipment and analyzes the result of uncertainty estimation. Vibration of shipboard equipments affects underwater radiated noise that is important performance related to stealth of the naval vessel. Acceptance testing for shipboard equipment is required to guarantee the stealth performance of naval vessel. In measuring, detailed uncertainty estimation is essential to improve measuring reliability. Acceptance testing result of structure-borne noise and vibration is used to analyze uncertainty in vibration measurement of shipboard equipment.

선박소음해석에 있어서 SEA 모델링 정밀도의 영향 (Influence of modeling fineness of SEA in shipboard noise predictions)

  • 강현주;김재승;김현실;김봉기;김상렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.355-358
    • /
    • 2008
  • This study deals with a substantial problems with SEA modeling methods in shipboard noise predictions. As a first problems with respect to modeling, fineness of model that represents a real structure is numerically investigated by comparison among 3 models, Fine, Coarse and Simplified models. Comparison reveals that Fine model shows the lowest noise level among them since this model involve more energy transfer paths than the other models. Influence of in-plane wave is also examined by numerical comparison. It is clear that inclusion of in-plane wave affects the high frequency and the cabin far from a source.

  • PDF

선내 격실 소음 추정 자동화 프로그램 개발 (Development of Automated Program for Noise Prediction in Shipboard Compartments)

  • 오영근;박근효;류성선;강태욱;이동현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.519-524
    • /
    • 2011
  • The aim of this study is to develop an automated program for noise prediction in shipboard compartments, for this purpose of calculating noise levels accurately and quickly. The program calculates sound power level at HVAC components based on the empirical method suggested by NEBB and utilizing the manufacturer's test data. The program developed uses the GUI functions to help in efficient modeling and calculation. To verify the reliability of developed program, the predicted data was compared with the measured data in shipboard compartments. As a result, the average difference between predicted and measured data is ${\pm}3dB$.

  • PDF

LOTUS를 이용한 선박소음예측 (Shipboard Noise Prediction with LOTUS)

  • Kang, Hyun-J.;Kim, Jae-S.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1990년도 추계학술대회논문집; 한양대학교, 서울; 24 Nov. 1990
    • /
    • pp.53-58
    • /
    • 1990
  • The use of spreadsheet packages for solving noise control problems has been cited by several authors, eg Saha[1] and Thornton[2]. The effectiveness of using spreadsheet packages compared with the traditional computer programs written in high level languages was demonstrated when applied to relatively simple problems, such as the selection of hearing protectors or the prediction of noise equation which includes logarithmic additions at most represents the physics of the problem. The simplicity of the governing equation together with the requirement to handle a vast amount of data are considered to be the major reasons for noise control engineers to use spreadsheet packages. Although shipboard noise prediction seems to be very complicated, the calculation procedure itself is, in essence, identical especially true for prediction methods based on empirical formulae[3,4], ie the procedure that consists of the three basic elements, ie source, path and receiver. This paper discusses the application of spreadsheet package LOTUS 1-2-3 to shipboard noise prediction problems. A utility program of the package is written using macro functions and is shown to be especially useful for noise control engineers who are unfamiliar with spreadsheet packages. In addition, a new type of empirical formula, to estimate structureborne noise transmission loss, is proposed.

  • PDF

함정탑재 펌프류 장비의 공기음/고체음 저감 사례 연구 (Case study on the reduction of airborne and structure-borne noise of a shipboard pump)

  • 김상렬;김현실;김봉기;김재승;강현주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.411-415
    • /
    • 2007
  • The reduction of airborne and structure-borne noise of a shipboard pump for a navel ship is very important because the noise levels of the pump must not exceed criteria such as MIL-STD. In this paper, several practical examples of reducing the noise levels are presented. The examples show that the inadequate rotor-balancing and shaft-alignment results in the increase of the structure-borne noise on all lower mounts. It is also found that the unequal loading on mounts can cause the dramatically increasing the noise levels on certain local positions. Since the piping system arrangement such as valve location, flexible joint, and elbow location affects on the noise measurement, care must be taken to minimize the unnecessary noise from the piping system.

  • PDF