• Title/Summary/Keyword: ship structure

Search Result 1,130, Processing Time 0.027 seconds

Experimental Study of Vibration Characteristics of OKPO 300 (OKPO 300 진동 특성에 대한 실험적 연구)

  • Hwang, Arom
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.400-404
    • /
    • 2016
  • This paper presents experimental results for the vibration characteristics of the small unmanned underwater vehicle (UUV) OPKO 300, which was designed and manufactured by Daewoo ship and Marine Engineering Ltd. The autonomy of UUVs has led to an increase in their use in scientific, military, and commercial areas because their autonomy makes it possible for UUVs to be utilized instead of humans in hazardous missions such as mine countermeasure missions (MCM). Since it is impossible to use devices based on electromagnetic waves to gather information in an underwater environment, only sonar systems, which use sound waves, can be used in underwater environments, and their performance can strongly affect the autonomy of a UUV. Since a thruster system, which combines a motor and propeller in a single structure, is widely used as the propulsion system of a UUV and is mounted on the outside of a UUV’s stern, it can generate vibration, which can be transferred throughout the shell of the UUV from its stern to its bow. The transferred vibration can affect the performance of various sonar systems such as side-scan sonar or forward-looking sonar. Therefore, it is necessary to estimate the effect of the transferred vibration of the UUV on the sonar systems. Even if various numerical methods were used to analyze the vibration problem of a UUV, it would be hard to predict the vibration phenomena of a UUV at the initial design stage. In this work, an experimental study using OKPO 300 and an impact hammer was carried out to analyze the vibration feature of a small real UUV in the air. The frequency response function of the vibration based on the experimental results is presented.

Integrated Control of Underwater Manipulator and Master Arm using LED Communication (LED 광통신을 적용한 마스터 암과 수중 매니퓰레이터의 통합 제어)

  • Oh, Ji-Youn;Jun, Bong-Huan;Choi, Hyeung-Sik;Kim, Joon-Young;Ji, Dae-Hyeong;Son, Hyeon-Joong;Jo, Sung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.415-425
    • /
    • 2016
  • This paper presents the results of a study on the control system for an underwater manipulator controlled by a master arm through LED communication. The underwater manipulator was designed to be actuated by electric motors with six degrees of freedom for operation in various underwater environments. The master arm, which can remotely control the manipulator, was designed with a structure similar to the manipulator for convenient control. An underwater LED communication system was developed to communicate between the master arm and underwater manipulator. An integrated control program was developed that included data conversion, monitoring, datalogging, and filtering. Some experiments were performed to verify the performance of the developed control system of the master arm, manipulator, and LED communication system, and the results are presented.

Development of Structural Design Program to apply the Twin-Hull Car-ferry (쌍동형 카페리 구조설계용 프로그램 개발)

  • Lee, Jung-Ho;Oh, Jung-Mo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Twin-hulls frequently incur structural damage at connecting members between the hull and deck induced by pitching motions during voyages. so, reasonable reinforcement is necessary around vulnerable spots such as corner knuckle, the chine bottom and inner hull. Since guidelines for structural design are not clear, engineers often respond by reinforcing plate thickness, changing stiffener sizes and reducing frame spacing, etc. These members constitute about 85 % of the longitudinal dimensions of the ship, so it is necessary to locally reinforce certain points to minimize weight stress, and also solve construction cost problems while securing the freeboard margin. Therefore, we developed a new program by analyzing the structural design procedures for the twin car-ferries based on Korean Register of Shipping (KR) High Speed Craft Rules, identifying items that need to be added. In order to ensure the reliability of buckling estimations for procedures and design programs, we conducted a comparative study with other standards and confirmed that differences were minimal.

A Study on Fatigue Life Prediction of Welded Joints Through Fatigue Test and Crack Propagation Analysis (피로실험 및 균열진전 해석을 통한 용접부의 피로수명 예측에 관한 연구)

  • Y.C. Jeon;Y.I. Kim;J.K. Kang;J.M. Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.93-106
    • /
    • 2001
  • T-joint and hopper knuckle joint models are typical welded joints in ship structure, which are very susceptible to fatigue damage under service condition. Fatigue test and fracture mechanical analysis were performed on these joints to find out characteristics of fatigue behavior. Unified S-N curve was developed from the test results of these two types of joint using hot spot stress concept, and also propagation life was also estimated using Paris' crack propagation law. Residual stress effect on propagation life was considered in calculating propagation life, as was done with thermo-elasto-plastic FE analysis and residual stress intensity factor calculation. Fatigue life of similar kinds of welded joint could be predicted with this unified S-N curve and fracture mechanical analysis technique.

  • PDF

Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing (축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석)

  • Cho, Dae-Seung;Jang, Heung-Kyu;Jin, Byung-Mu;Kim, Kookhyun;Kim, Sung-Chan;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.

Analysis of Seafarers' Behavioral Error on Collision Accidents (충돌사고에 대한 해기사의 행동오류 분석)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.4
    • /
    • pp.237-242
    • /
    • 2019
  • Behavioral errors of the seafarers are one of the major causes of collisions and are usually corrected through education and training. To correct this behavioral error, the structure in which the behavioral error occurs needs to be identified and analyzed. For this purpose, behavior observation data were obtained through ship maneuvering simulation for collision encounters. The 9-state behavior classification frame proposed by Reason was used for the behavior observation and 50 university students were involved in the experiment. Behavioral analysis used the behavioral model of collision avoidance success and failure, which was developed from the 9-state Left-to-Right Hidden Markov modeling technique. As a result of the experiment, the difference between behaviors of success and failure of collision avoidance was clearly identified, and the linkage between 9-state behaviors, required to prevent collision, was derived.

Assessment of Theoretical Annual Energy Production in the Coast of South Korea Using Tidal Current Energy Converters Utilizing Flow Induced Vibration (한국 해안에서 유동유발진동 현상을 이용한 조류에너지 발전기술의 이론적 연간 발전량 산정연구)

  • Kim, Eun Soo;Oh, Kwang Myung;Park, Hongrae
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • The Korean government is aiming to produce 20% of the electricity using renewable energy sources by 2030. Ocean renewable energy sources which are abundant in South Korea can do an important role to achieve the goal. This paper introduces a tidal current energy converter utilizing flow induced vibrations which can efficiently work even in the currents slower than 1.0m/s and suggests optimal designs of the tidal energy converter based on speeds of the tidal currents in seven different coastal regions in South Korea. Moreover, the theoretical annual energy production by the tidal converter is estimated at theses costal areas. The total amount of the annual energy production by the tidal energy converter is predicted as 221.77 TWh which is equivalent to 42.3% of the electric consumption of South Korea in 2013. The result shows that the tidal current energy converter can be an important role to achieve the goal of the Korean government.

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

A Study on the Standardization of On-Board Training System Software for Naval Ship Engineering Control System

  • Kwak, Seung-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.97-104
    • /
    • 2021
  • Since 1993, Successfully localized naval combat System has made steady development on various domestic and foreign ships. On the other hand, Engineering Control System(ECS) is dependent on foreign companies. Therefore, there is a lot of interest and research in the localization of ECS in the navy defense industry. As one of various studies, a preliminary study of domestic ECS software that can be commonly applied to naval ships is in progress. This paper propose Ecs Obts Scalable Platform(EOSPA) as the standard architecture of ECS On-Board Training System(OBTS) software by applying object-oriented programming and standardization. And this introduces EOSPA's structure, function, and features of each component. Furthermore, high reusability and maintainability are expected in the development of ECS OBTS software applying EOSPA in various naval ships.

Time-Shift technique in Joseph Conrad's Lord Jim (조셉 콘라드의 『로드 짐』에서의 시간 전도 기법)

  • Park, Sun-Hwa
    • English & American cultural studies
    • /
    • v.9 no.1
    • /
    • pp.221-237
    • /
    • 2009
  • This paper analyzes the time-shift technique in Joseph Conrad's Lord Jim. Conrad's manipulation of time in this novel is based on his aspiration for how 'to make you see,' which he believes is completed through the harmony form and substance in his works. So Conrad applies this technique which was used earlier by some writers such as Laurence Sterne to his Lord Jim to show its theme more effectively. In Lord Jim, the story consists of two parts; first, Jim jumps from a ship called the Patna and is deprived of his navigation certificate. Secondly, he wins the people's respect in Patusan in which his past related to the Patna remains hidden, but he faces his death by taking responsibility for the death of the chief's son in the island. These events in Lord Jim are not described in chronological order; that is, some events are depicted with the time-shift technique using flashback, association, or fragmentary memory to accelerate the speed of stories as well as to offer the actuality of the events. With this structure, the themes of Jim's story have something to do with his heroic actions and failures. Jim wants to be a hero and after failures he struggles to redeem himself only to fail. In particular, Jim's jump from the Patna is emphasized through the time-shift and it shows there is something incomprehensible in his action. Therefore, Conrad reveals in Lord Jim that Jim is one of us who not only are imperfect but also have the weaknesses inside that can unexpectedly emerge in an instant.