• Title/Summary/Keyword: ship strength

Search Result 574, Processing Time 0.035 seconds

On the Critical Damage Factor for Fatigue Strength Analysis (한계 누적 피로 피해도에 의한 피로 강도 해석)

  • Kim, H.C.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.281-294
    • /
    • 1997
  • Fatigue strength analysis is one of the most important themes of ship structure design, as fatigue damages are reported on ship structures even now. But these need basic research workes which will take time. The others are the problem to apply fatigue strength analysis in design and have to be investigated in parallel with basic researches. The one of major items in the latter is the critical damage factor to define with S-N curve for fatigue strength analysis of ship structure design.

  • PDF

Longitudinal Ultimate Strength Analysis of Aluminum Alloy Ship Structures (알루미늄합금 선체의 최종 종강도에 대한 해석)

  • 백점기;이제명;박철민;박영일;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.254-261
    • /
    • 2004
  • Until now, there are different kinds of design and evaluation method criteria for ship hulls and ship strength based on allowable stress design using past experiences. But for many sinking accidents of large ships in operation, it has also a doubt about allowable stress design. It is recognized that structural plastic collapse caused by large external force is a main cause of that accidents. Therefore, there is the need for new design criteria based on ultimate limit state with a consideration about progressive collapse behavior as a safety assessment of ship hulls. Also many aluminum alloy ships is built for the purposes of lightweight of ship hulls, with that, a developing of criteria based on ultimate limit state should be made. In this study, the ultimate strength characteristics of aluminum ship hull are investigated by the ALPS/USAS program using already developed design formula for aluminum plate and stiffened panel.

  • PDF

Torsional Strength of CFRP Material for Application of Ship Shaft System (CFRP 소재의 선박용 축계 적용을 위한 비틀림강도 특성)

  • Kim, Min-kyu;Shin, Ick-gy;Kim, Seon Jin;Park, Dae Kyeom;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.431-439
    • /
    • 2021
  • The Carbon Fiber Reinforced Plastic (CFRP) material is recently widely used in the composite industry with excellent rigidity and lightweight properties. A ship shaft system requires high standards of safety on torsional strength capacity. The purpose of this study is to verify the applicability of a CFRP shaft system to take the place of metal shaft systems for ships from a viewpoint of torsional strength. Selection of materials and manufacturing method are executed then two geometrically scaled CFRP shaft system models were designed and manufactured with three-layer patterns. The models were used for a series of torsion tests under single and repeated torsional loading conditions. Detailed design and manufacturing methods for a CFRP ship shaft system are documented and the torsion test results are listed in this paper. The results of this study could be useful guidelines on the development of CFRP ship shaft systems and a test method.

Comparison of residual strength-grounding damage index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method

  • Kim, Do Kyun;Kim, Han Byul;Mohd, Mohd Hairil;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-61
    • /
    • 2013
  • This study compares the Residual ultimate longitudinal strength - grounding Damage index (R-D) diagrams produced by two analysis methods: the ALPS/HULL Intelligent Supersize Finite Element Method (ISFEM) and the design formula (modified Paik and Mansour) method - used to assess the safety of damaged ships. The comparison includes four types of double-hull oil tankers: Panamax, Aframax, Suezmax and VLCC. The R-D diagrams were calculated for a series of 50 grounding scenarios. The diagrams were efficiently sampled using the Latin Hypercube Sampling (LHS) technique and comprehensively analysed based on ship size. Finally, the two methods were compared by statistically analysing the differences between their grounding damage indices and ultimate longitudinal strength predictions. The findings provide a useful example of how to apply the ultimate longitudinal strength analysis method to grounded ships.

A Study of the In-plane Rigidity of a Compressed Ship Plate above Buckling Load (압축하중을 받는 선체판의 좌굴후 면내강성에 관한 연구)

  • 고재용;박성현;박주신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.107-112
    • /
    • 2002
  • Basically, ship structure consists of the plate members, and a strength of overall ship structurnds on the stiffness and strength of ship platings. If buckling which causes to deflect ship plate members occurs, the stiffness of ship plate markedly decreases, and thus buckling has a serious effect on the stiffness or strength of overall ship structure. Buckling is one of the most important design criteria when we scantle structure members. In the present study, a inplane rigidity of a compressed ship plate above buckling load is proposed. The proposed inplane rigidity is available in the elastic or elasto-Plastic ranges in order to can out a more efficient and reliable design.

  • PDF

A Study on the fatigue strength analysis of the welded joints in ship hull construction (선체구조의 용접이음부의 피로강도 해석법에 관한 연구)

  • 엄동석;강성원;이성구;김원범
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.259-267
    • /
    • 1992
  • In this report, a method to predict the fatigue strength in welded structure member of ship construction is studied considering the effects of statistical characteristics of mild steels and weld toe shapes on the fatigue crack initiation life. The fatigue test under pulsating bending load is carried out with the model specimens of the web frame in double bottom of ship hull. The propriety of the fatigue life curve with probability of failure in the transverse strength members of ship hull construction is confirmed by the comparison with the results of fatigue test on the model of the various transverse strength members.

  • PDF

On the effects of hull-girder vibration upon fatigue strength of a Post-Panamax container ship disaggregated by short-term sea state

  • Fukasawa, Toichi;Mukai, Keiichi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.431-441
    • /
    • 2014
  • The effects of hull-girder vibration on the fatigue strength of a Post-Panamax container ship are discussed in the present paper. Firstly, the short-term sea states are categorized according to the occurrence probability of each sea state. Time histories of hull-girder stress in short-term sea states are calculated by means of a nonlinear simulation code of ship response assuming that the hull-girder is rigid and flexible. Then, the calculated stress peaks are processed by the rainflow counting method, where two different counting procedures are used based on the considerations of crack propagation behaviors. Finally, the fatigue damage in life time of the ship in each categorized short-term sea state is estimated by means of Miner's rule. Based on the calculated results, the effects of hull-girder vibrations on the fatigue damage are clarified by disaggregated damage from short-term sea state.

Effect of stress-strain curve changing with equal channel angular pressing on ultimate strength of ship hull stiffened panels

  • Sekban, Dursun Murat;Olmez, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.473-484
    • /
    • 2021
  • Similar to other structures, ultimate strength values showing the maximum load that the structure can resist without damaging has great importance on ships. Therefore, increasing the ultimate strength values will be an important benefit for the structure. Low carbon steels used in ships due to their low cost and good weldability. Improving the ultimate strength values without interfering with the chemical composition to prevent of the weldability properties of these steels would be very beneficial for ships. Grain refinement via severe plastic deformation (SPD) is an essential strengthening mechanism without changing the chemical composition of metallic materials. Among SPD methods, equal channel angular pressing (ECAP) is one of the most commonly used one due to its capacity for achieving bulk ultrafine-grained (UFG) materials. When the literature is examined, it is seen that there is no study about ultimate strength calculation in ships after ECAP. Therefore, the mean purpose of this study is to apply ECAP to a shipbuilding low carbon steel to be able to achieve mechanical properties and investigate the alteration of ship hull girder grillage system's ultimate strength via finite element analysis approach. A fine-grained (FG) microstructure with a mean grain size of 6 ㎛ (initial grain size was 25 ㎛) was after ECAP. This microstructural evolution brought about a considerable increase in strength values. Both yield and tensile strength values increased from 280 MPa and 425 MPa to about 420 MPa and 785 MPa, respectively. This improvement in the strength values reflected a finite element method to determine the ultimate strength of ship hull girder grillage system. As a result of calculations, it was reached significantly higher ultimate strength values (237,876 MPa) compared the non-processed situation (192,986 MPa) on ship hull girder grillage system.

Ultimate Strength Assessment of Ship Stiffened Panel under Arctic Conditions (극지환경을 고려한 선체보강판 구조의 최종강도 평가)

  • Kim, YangSeop;Park, DaeKyeom;Kim, SangJin;Lee, DongHun;Kim, BongJu;Ha, YeonChul;Seo, JungKan;Paik, JeomKee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.283-290
    • /
    • 2014
  • Environmental changes, especially global climate change, are creating new routes to reduce a shipping service distance in Arctic area. The Arctic routes are shorter than 60% of existing ways Panama or Suez canal). For this reason, ship owners prefer to navigate in Arctic area and a transportation of goods though the Arctic area is increasing. But the low temperature in Arctic condition changes the material properties. Especially, the material will be brittle and strength will increase. And an ultimate strength analysis of ship stiffened panels is changed depending on temperatures. In present study, the ultimate strength analysis of stiffened panels in double hull oil tankers is performed under various low temperatures with the material properties obtained by tensile coupon test. The analytical method as named ALPS/ULSAP was used for analysis method and 6 kinds of temperature (20, 0, -20, -40, -60 and $-80^{\circ}C$) were considered to investigate the effect of Arctic conditions.

Nonlinear Finite Element Analysis for Ultimate Hull Girder Strength of Container Ship (컨테이너선의 최종 종강도 평가를 위한 비선형 유한요소 해석의 적용)

  • Yeom, Cheol Wung;Moon, Jeong Woo;Nho, In Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Through the recent accident, the checking of ultimate hull girder capacity for container ship should be needed. Smith’s method is well known as the only simplified method to access rapidly for ultimate hull girder capacity except very expensive nonlinear F.E approach. This simplified method, however, is admitted to apply only to bulker and tanker in accordance with Classification Rules up to now. The targets of this study are to verify effectiveness of the simplified method for container ship’s ultimate hull girder strength and to propose the safety factor considering the local bending in double bottom structures due to out of plane loads through the nonlinear F.E analyses. Two different sized ships and three loading conditions which are pure bending, homo-loading and one-bay empty condition were used for this study. Based on the F.E results, the present study showed that CSR’s simplified method is available for the ultimate hull girder strength of container ship and over 1.2 of safety factor should be applied to consider the local bending effect in double bottom structures due to out of plane loads such as sea pressure an cargo.