• Title/Summary/Keyword: ship positioning

Search Result 131, Processing Time 0.025 seconds

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Naknma, Yoshiyasu;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The Kinematic GPS is well known to provide a quite good accuracy of positioning within an level. Although kinematic GPS assures high precision measurement on the basis of an appreciable distance between a reference station and an observational point, it has measurable distance restriction within 20 km from a reference station on land. Therefore, it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction In this paper, the velocity integration method to get the precise velocity information of a ship is explained. The experimental results of Zig-zag maneuver and Williamson turn as the ship's maneuvering test, and other experimental results of ship's movement during leaving and entering the port with low speed were shown. From the experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.

Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance (무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정)

  • Ryu, Hyoungseok;Klimkowska, Anna Maria;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.393-406
    • /
    • 2018
  • Every year in the ocean, various accidents occur frequently and illegal fishing is rampant. Moreover, their size and frequency are also increasing. In order to reduce losses of life or property caused by these, it is necessary to have a means to perform remote monitoring quickly. As an effective platform of such monitoring means, an Unmanned Aerial Vehicle (UAV) is receiving the spotlight. In these situations where marine accidents or illegal fishing occur, main targets of monitoring are ships. In this study, we propose a UAV based ship monitoring system and suggest a method of determining ship positions using UAV multi-sensory data. In the proposed method, firstly, the position and attitude of individual images are determined by using the pre-performed system calibration results and GPS/INS data obtained at the time when images were acquired. In addition, after the ship being detected automatically or semi-automatically from the individual images, the absolute coordinates of the detected ships are determined. The proposed method was applied to actual data measured at 200 m, 350 m, and 500 m altitude, the ship position can be determined with accuracy of 4.068 m, 8.916 m, and 13.734 m, respectively. According to the minimum standard of a hydrographical survey, the ship positioning results of 200 m and 350 m data satisfy grade S and the results of 500 m data do grade 1a, where the accuracy is required for positioning the coastline and topography less significant to navigation order. Therefore, it is expected that the proposed method can be effectively used for various purposes of marine monitoring or surveying.

Smart Device Based Localization for Ship Block Logistics

  • Song, Kwon-Soo;Lee, Sangdon;Cho, Doo-Yeoun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1506-1516
    • /
    • 2012
  • In a ship block logistics application, acquisition of locations is required in order to identify location of the ship blocks. A Smart device equipped with a GPS sensor can be used as a mobile client for a ship block logistics application. However the precision of GPS components on a commercial smart device is not high enough. Therefore, using the GPS for localization may produce significant positioning errors in a ship block logistics system. This paper proposes a method to reduce errors in measuring locations using a smart device. Based on the knowledge of how the location information is used in a ship block logistics application, and the predictability of the client's moving line based on geographical layout of a shipyard area, our proposed technique enables a better prediction of the ship blocks location. Performance evaluation shows that the proposed technique can significantly reduce the positional error.

Design of Field Development Ship for Ultra-Deepwater (초심해 용 유전개발선의 설계)

  • Park, H.S.;S.W. Yoon;I.M. Song
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.87-92
    • /
    • 2001
  • This technical note is intended to introduce a state-of-the-art offshore construction vessel. This unique vessel is for multi-purpose Field Development Ship (FDS) for deepwater to ultra-deepwater. The FDS is a construction vessel with dynamic positioning (DP) system intended to develop offshore oil and gas field in water depth up to 3000 m. The design criteria and main capacities of the vessel are discussed.

  • PDF

Conceptual Design for Mooring Stability System and Equipments of Mobile Harbor (모바일하버 선박의 계류안정화시스템 및 의장장치 개념설계)

  • Lee, Yun-Sok;Jeong, Tae-Gwon;Jung, Chang-Hyun;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.311-317
    • /
    • 2010
  • Mobile Harbor(MH) is a new paradigm for maritime transport system introduced in Korea, the target of which is to carry out ship-to-ship cargo operation rapidly and effectively even under a condition of sea state 3. A MH ship is moored alongside a large container vessel anchored at the defined anchorage and also equipped with gantry cranes for handling containers. The MH study concerned includes rapid container handling system, optimum design for floating structure, hybrid berthing & cargo operation system, design for cargo handling crane, etc. This paper is to deal with a conceptual design of a stabilized mooring system and mooring equipment under a condition of ship-to-ship mooring. In this connection, we suggest a positioning control winch system in order to control heave motions of the MH ship which is to add constant brakepower and stabilized function to an auto-tension winch and mooring equipment used currently in large container ships.

Design the Autopilot System of using GA Algorithm

  • Lee, Sang-Min;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.699-703
    • /
    • 2004
  • The autopilot system targets decreasing labor, working environment, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization, Dynamic ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And, Load Condition of ship acts as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that id disturbance act in non-linear form, become factor who make service of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using GA algorithm,design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

A Study of Eliminating NNSS Speed Error by Use of Deviation of NNSS Position Error (NNSS 선위오차의 편차를 이용한 속도오차소법에 관한 연구)

  • 양창진
    • Journal of the Korean Institute of Navigation
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 1980
  • As the NNSS system calculates ship's position by the doppler shift of the NNSS radio waves caused by the change of the distance between Transit Satellite and the ship, ship's speed error inevitably results in the position error, and moreover this kind of erroris most dominant compared with other errors especially in high speed ships and airplanes. Most NNSS receivers now in use have adoptedsuccessive short doppler counts as positioning data and by investigating the dispersion of serval successive positions calculated and by neglecting the mean position having dispersion of over certain threshold level, more accurate adn safe position is to be achieved. This paper proposes the method of finding ship's true speed by selecting a speed having least position dispersion for given successive doppler counts. And by computer simulation it was verified that the method proposed here is reasonable in finding the ship's desired correct speed together with the correct ship's position.

  • PDF

Characteristics of automatic positioning transmitter (APT)using satellite on life jacket to minimize casualties of fisherman (어선원 인명피해 최소화를 위한 구명동의용 위성자동위치발신기의 특성)

  • Kim, Seok-Jae;Kim, Wook-Sung;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.3
    • /
    • pp.235-241
    • /
    • 2012
  • The efficiency tests of automatic positioning transmitter (APT) using satellite on life jacket were carried out to minimize casualties of fishermen and to make system optimization for effective SAR (Search and Rescue) operation. As the result of the tests, average position was equaled on the comparison between SPOT using low earth orbit satellite and DGPS (Differential Global Positining System), but standard deviation of DGPS for latitude and longitude were 66.4% and 46.3% smaller than those of SPOT. The position precision of SPOT was almost two times lower than LGT using geostationary satellite to compare 95% circular error probability. However, the success rate of receiver for SPOT was revealed as 86.5~94.1% on the experiments in the South Sea and the West Sea and it was 4.5 times higher than LGT. Therefore, SPOT is expected to contribute greatly to the rapid rescue of victim.

Design and Analysis of Dynamic Positioning System Using a Nonlinear Robust Observer

  • Kim, Myung-Hyun
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.46-52
    • /
    • 2002
  • A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. The main advantage of the proposed observer is in its robustness. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. Since the mathematical model of DP ships is difficult to obtain and includes uncertainties and disturbances, it is very important for the observer to be robust. A nonlinear output feedback controller is derives based on the developed observer using the observer backstepping technique, and the global stability of the observer and control law is shown by Lyapunov stability theory.. A set of simulation was carried out to investigate the performance of the proposed observer for dynamic positioning of ships.

  • PDF

An alternative portable dynamic positioning system on a barge in short-crested waves using the fuzzy control

  • Fang, Ming-Chung;Lee, Zi-Yi
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.199-220
    • /
    • 2015
  • The paper described the nonlinear dynamic motion behavior of a barge equipped with the portable outboard Dynamic Positioning(DP) control system in short-crested waves. The DP system based on the fuzzy theory is applied to control the thrusters to optimally adjust the ship position and heading in waves. In addition to the short-crested waves, the current, wind and nonlinear drifting force are also included in the calculations. The time domain simulations for the six degrees of freedom motions of the barge with the DP system are solved by the $4^{th}$ order Runge-Kutta method. The results show that the position and heading deviations are limited within acceptable ranges based on the present control method. When the dynamic positioning missions are needed, the technique of the alternative portable DP system developed here can serve as a practical tool to assist those ships without equipping with the DP facility.