• Title/Summary/Keyword: ship collision accident

Search Result 114, Processing Time 0.032 seconds

Collision Cause-Providing Ratio Prediction Model Using Natural Language Processing Analytics (자연어 처리 기법을 활용한 충돌사고 원인 제공 비율 예측 모델 개발)

  • Ik-Hyun Youn;Hyeinn Park;Chang-Hee, Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.82-88
    • /
    • 2024
  • As the modern maritime industry rapidly progresses through technological advancements, data processing technology is emphasized as a key driver of this development. Natural language processing is a technology that enables machines to understand and process human language. Through this methodology, we aim to develop a model that predicts the proportions of outcomes when entering new written judgments by analyzing the rulings of the Marine Safety Tribunal and learning the cause-providing ratios of previously adjudicated ship collisions. The model calculated the cause-providing ratios of the accident using the navigation applied at the time of the accident and the weight of key keywords that affect the cause-providing ratios. Through this, the accuracy of the developed model could be analyzed, the practical applicability of the model could be reviewed, and it could be used to prevent the recurrence of collisions and resolve disputes between parties involved in marine accidents.

A Study on Preventive Measures against Large Oil Spills in the Korean Coastal Waters-1 - Analyzing the Spill Accident from M/T Hebei Spirit - (우리나라 연안역에서의 대형해양오염사고 방지책에 관한 연구-1 - Hebei Spirit 호 오염사고를 중심으로 -)

  • Yun, Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.249-255
    • /
    • 2008
  • IOn 7th of Dec. 2007, large oil spill took place the seas off the Taean coast caused by the collision between VLCC Hebei Spirit and crane floating barge Samsung-1 and a lot of problems were revealed during response to the accident. The author, accordingly, examined to analyze the cause of this accident on the aspect of spill prevention and presented some preventive measures, such as strictness to the current standard for tug operation, expansion of VTS service area and transfer of the VTS responsibility to Korea Coast Guard, designation of appropriate anchorage per ship's type, cargo and visiting purpose, and special management for dangerous goods carriers.

  • PDF

Spatiotemporal Analysis of Ship Floating Object Accidents (선박 부유물 감김사고의 시·공간적 분석)

  • Yoo, Sang-Lok;Kim, Deug-Bong;Jang, Da-Un
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1004-1010
    • /
    • 2021
  • Ship-floating object accidents can lead not only to a delay in ship's operations, but also to large scale casualties. Hence, preventive measures are required to avoid them. This study analyzed the spatiotemporal aspects of such collisions based on the data on ship-floating object accidents in sea areas in the last five years, including the collisions in South Korea's territorial seas and exclusive economic zones. We also provide basic data for related research fields. To understand the distribution of the relative density of accidents involving floating objects, the sea area under analysis was visualized as a grid and a two-dimensional histogram was generated. A multinomial logistic regression model was used to analyze the effect of variables such as time of day and season on the collisions. The spatial analysis revealed that the collision density was highest for the areas extending from Geoje Island to Tongyeong, including Jinhae Bay, and that it was high near Jeongok Port in the West Sea and the northern part of Jeju Island. The temporal analysis revealed that the collisions occurred most frequently during the day (71.4%) and in autumn. Furthermore, the likelihood of collision with floating objects was much higher for professional fishing vessels, leisure vessels, and recreational fishing vessels than for cargo vessels during the day and in autumn. The results of this analysis can be used as primary data for the arrangement of Coast Guard vessels, rigid enforcement of regulations, removal of floating objects, and preparation of countermeasures involving preliminary removal of floating objects to prevent accidents by time and season.

On the structural behavior of ship's shell structures due to impact loading

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • When collision accident between ships or between ship and offshore platform occurs, a common phenomenon that occurs in structures is the plastic deformation accompanied by a large strain such as fracture. In this study, for the rational design against accidental limit state, the plastic material constants of steel plate which is heated by line heating and steel plate formed by cold bending procedure have been defined through the numerical simulation for the high speed tension test. The usefulness of the material constants included in Cowper-Symonds model and Johnson-Cook model and the assumption that strain rate can be neglected when strain rate is less than the intermediate speed are verified through free drop test as well as comparing with numerical results in several references. This paper ends with describing the future study.

A Study on Course Stability of Towed Damaged-ship under Wind Pressure (풍압력하에서 피예항중인 손상선박의 침로안정성에 관한 연구)

  • K.H. Sohn;Y.K. Kim;S.G. Lee;K.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.46-56
    • /
    • 2000
  • This paper is related with one of safety plans to rescue a damaged-ship whether by collision, grounding or internal accident. We discuss the problem on course stability of damaged-ship while towed under severe wind pressure. The characteristic equation to assess the stability on course, is derived from sway and yaw coupled motion of towing and towed vessels with wind effect. Through the numerical calculation on course stability of towing and towed vessels system, the relationship between the course stability of a towed damaged-ship and wind direction or towrope length, is clarified with the parameters of weather and damage conditions.

  • PDF

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Background and Prospect on Carrying Position Indicating Equipment on Board by Law (선박위치자동발신장치 설치 의무화의 배경과 향후 전망)

  • Kwang, An;Kim, In-Cheol
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.149-152
    • /
    • 2007
  • According to the Ship Safety Act amended on 23 Mar. 2006, ships above certain size shall curry position indicating equipment The Vessel Monitoring (VMS) will help to upgrade the present search and rescue mechanism and reduce the loss et lives caused by marine accident Public Notice on standards for installation et ship position indicating equipment was published on 1 Nov. 2007 (MOMAF Notice No. 2007-88). In this paper, we would like to introduce the background, applying ships, prospect for currying ship position indicating equipment at the implementation aspect on Vessel Monitoring System.

  • PDF

Analysis of a Naval Warship Accident and Related Risk (해군함정 사고사례 및 위험도 분석에 관한 연구)

  • Shin, Daewoon;Park, Youngsoo;Choi, Kwang-young;Park, Sangwon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.863-869
    • /
    • 2018
  • Due to recent changes in the maritime traffic environment, naval warship accidents are constantly occurring. Especially in 2017, serious loss of life was caused by a US navy destroyer accident. The purpose of this study is to analyze the characteristics of naval warship accident cases and construct an accident scenario by using naval training materials, adjudication of naval warship accidents and US navy destroyer accident reports. Based on the surveyed data, the status of accidents was identified and cases were analyzed. We reproduced 17 accident cases in accordance with accident reproduction procedure and constructed naval warship accident scenarios. As a result of analyzing the CPA, TCPA and PARK model for risk, reproducing 17 naval ship accident cases, collision risk increased on average 5-6 minutes before an accident. The result of this study represents basic data for naval and simulation education materials, contributing to the prevention of marine accidents.

Development of a Human Factors Investigation and Analysis Model for Use in Maritime Accidents: A Case Study of Collision Accident Investigation

  • Kim, Hong-Tae;Na, Seong
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.303-318
    • /
    • 2017
  • In the shipping industry, it is well known that around 80 % or more of all marine accidents are caused fully or at least in part by human error. In this regard, the International Maritime Organization (IMO) stated that the study of human factors would be important for improving maritime safety. Consequently, the IMO adopted the Casualty Investigation Code, including guidelines to assist investigators in the implementation of the Code, to prevent similar accidents occurring again in the future. In this paper, a process of the human factors investigation is proposed to provide investigators with a guide for determining the occurrence sequence of marine accidents, to identify and classify human error-inducing underlying factors, and to develop safety actions that can manage the risk of marine accidents. Also, an application of these investigation procedures to a collision accident is provided as a case study This is done to verify the applicability of the proposed human factors investigation procedures. The proposed human factors investigation process provides a systematic approach and consists of 3 steps: 'Step 1: collect data & determine occurrence sequence' using the SHEL model and the cognitive process model; 'Step 2: identify and classify underlying human factors' using the Maritime-Human Factor Analysis and Classification System (M-HFACS) model; and 'Step 3: develop safety actions,' using the causal chains. The case study shows that the proposed human factors investigation process is capable of identifying the underlying factors and indeveloping safety actions to prevent similar accidents from occurring.

A Study on Dynamic Analysis of Moored Ship Motions by Tsunami (쓰나미에 의한 계류 선박의 동적 동요 해석에 관한 연구)

  • Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.661-666
    • /
    • 2005
  • Recent warnings indicate that there is a potential risk of massive earthquake. These earthquakes could produce large-scale tsunamis. Consideration of the effect of Tsunami to the moored ship is very important bemuse it brings the loss of life and vast property damage in a viewpoint of ship operations within a harbor. If a tsunami occurs, a ship in a harbor may begin drifting in case of ship entering and departing harbor, and breakage of mooring rope and drifting of moored ship are happened. And extremely serious accident, such as stranding and collision to a quay, might occur. On the other hand, since the tsunami consists of approximately component waves of several minutes, there is a possibility of resonance with the long period motion of mooring vessel. As the speed of Tsunami is much faster than tidal current in a harbor, a strong resisting force might act on the moored ships. In this paper, the numerical simulation procedure in the matter of ship motions due to the attack of large-scale tsunamis are investigated and the effects on the ship motions and mooring loads are evaluated by numerical simulation.