• Title/Summary/Keyword: ship block

Search Result 210, Processing Time 0.12 seconds

Extreme Value Analysis of Statistically Independent Stochastic Variables

  • Choi, Yongho;Yeon, Seong Mo;Kim, Hyunjoe;Lee, Dongyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.222-228
    • /
    • 2019
  • An extreme value analysis (EVA) is essential to obtain a design value for highly nonlinear variables such as long-term environmental data for wind and waves, and slamming or sloshing impact pressures. According to the extreme value theory (EVT), the extreme value distribution is derived by multiplying the initial cumulative distribution functions for independent and identically distributed (IID) random variables. However, in the position mooring of DNVGL, the sampled global maxima of the mooring line tension are assumed to be IID stochastic variables without checking their independence. The ITTC Recommended Procedures and Guidelines for Sloshing Model Tests never deal with the independence of the sampling data. Hence, a design value estimated without the IID check would be under- or over-estimated because of considering observations far away from a Weibull or generalized Pareto distribution (GPD) as outliers. In this study, the IID sampling data are first checked in an EVA. With no IID random variables, an automatic resampling scheme is recommended using the block maxima approach for a generalized extreme value (GEV) distribution and peaks-over-threshold (POT) approach for a GPD. A partial autocorrelation function (PACF) is used to check the IID variables. In this study, only one 5 h sample of sloshing test results was used for a feasibility study of the resampling IID variables approach. Based on this study, the resampling IID variables may reduce the number of outliers, and the statistically more appropriate design value could be achieved with independent samples.

Integrated Process Planning and Scheduling for Machining Operation in Shipbuilding (선각 내업 가공작업의 공정계획과 일정계획의 통합화 방안 연구)

  • Cho, Kyu-Kab;Oh, Jung-Soo;Kim, Young-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.75-84
    • /
    • 1997
  • This paper describes the development of an integrating method for process planning and scheduling activities for block assembly in shipbuilding. A block is composed of several steel plates and steel sections with the predetermined shapes according to the ship design. The parts which constitute the block are manufac- tured by cutting and/or bending operations, which are termed as machining operation in this paper. The machining operation is the first process for block assembly which influences the remaining block assembly processes. Thus process planning and scheduling for machining operation to manufacture parts for block are very important to meet the assembly schedule in the shipyard. An integrating method for process plan- ning and scheduling is developed by introducing the concept of distributed process planning and scheduling composed of initial planning, alternative planning and final planning stages. In initial planning stage, nesting parts information and machining emthods are generated for each steel plate. In alternative plan- ning stage, machine groups are selected and workcenter dispatching information is generated. In final planning stage, cutting sequences are determined. The integrated system is tested by case study. The result shows that the integrated system is more efficient than existing manual planning system.

  • PDF

A Study on the Pattern Matching Algorithm of 3D Coordinates for Quality Control in Ship Blocks (선박블록의 정도관리를 위한 3차원 좌표의 패턴매칭 알고리즘에 대한 연구)

  • Lee, Ho Cheol;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.933-939
    • /
    • 2012
  • In general, the three-dimensional(3D) coordinates of the manufactured ship blocks are measured using the laser measuring equipment by ship engineers. But, many deflections between the measured coordinates in manufactured step and the designed coordinates in the design step are occurred because of the measuring process of ship blocks manually. Thus, the ship engineer should conform the consistency between the measured coordinates and the designed coordinates step by step, and it largely causes the loss of manpower and time. In this paper, the automated pattern matching algorithm of 3D coordinates for quality control in ship blocks is suggested in order to solve this problem, and the performance of the algorithm is analyzed using the 3D coordinates simulation software developed by our research laboratory. The coordinates matching rate of the measured coordinates in the single/multi ship block(s) is about 90.2% under the tolerated distance error range is 20~25cm.

Development of the Design System for the Lifting Lug Structure (탑재용 러그 구조의 설계 시스템 개발)

  • 함주혁
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.189-194
    • /
    • 2000
  • Due to the rapid growth of ship building industry and increment of ship construction in Korea, several hundred thousand of lifting lugs per year, have been installed at the lifting positions of ship block and removed after finishing their function, therefore, appropriate design system for strength check or optimal design of each lug structure has been required in order to increase the capability of efficient design. In this study, design system of D-type lifting lug structure which is most popular and useful in shipyards, was developed for the purpose of initial design of lug structure. Developed system layout and graphic user interface for this design system based on the C++ language were explained step by step. Using this design system, more efficient performance of lug structural design will be expected on the windows of personal computer.

  • PDF

A Study on Matching Method of Hull Blocks Based on Point Clouds for Error Prediction (선박 블록 정합을 위한 포인트 클라우드 기반의 오차예측 방법에 대한 연구)

  • Li, Runqi;Lee, Kyung-Ho;Lee, Jung-Min;Nam, Byeong-Wook;Kim, Dae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • With the development of fast construction mode in shipbuilding market, the demand on accuracy management of hull is becoming higher and higher in shipbuilding industry. In order to enhance production efficiency and reduce manufacturing cycle time in shipbuilding industry, it is important for shipyards to have the accuracy of ship components evaluated efficiently during the whole manufacturing cycle time. In accurate shipbuilding process, block accuracy is the key part, which has significant meaning in shortening the period of shipbuilding process, decreasing cost and improving the quality of ship. The key of block accuracy control is to create a integrate block accuracy controlling system, which makes great sense in implementing comprehensive accuracy controlling, increasing block accuracy, standardization of proceeding of accuracy controlling, realizing "zero-defect transferring" and advancing non-allowance shipbuilding. Generally, managers of accuracy control measure the vital points at section surface of block by using the heavy total station, which is inconvenient and time-consuming for measurement of vital points. In this paper, a new measurement method based on point clouds technique has been proposed. This method is to measure the 3D coordinates values of vital points at section surface of block by using 3D scanner, and then compare the measured point with design point based on ICP algorithm which has an allowable error check process that makes sure that whether or not the error between design point and measured point is within the margin of error.

Spatial Scheduling in Shipbuilding Industry

  • Duck Young Yoon;Varghese Ranjan;Koo Chung Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.106-110
    • /
    • 2004
  • In any large heavy industry like that of ship building, there exist a lot of complications for the arrangement of building blocks optimally for the minimal space consumption. The major problem arises at yard because of laxity in space for arranging the building blocks of ship under construction. A standardized erection sequence diagram is generally available to provide the prioritised erection sequence. This erection sequence diagram serves as the frame work. In order to make a timely erection of the blocks a post plan has to be developed so that the blocks lie in the nearest possible vicinity of the material handling devices while keeping the priority of erection. Therefore, the blocks are arranged in the pre-erection area. This kind of readiness of blocks leads to a very complex problem of space. This arises due to the least available space leading to an urgent need of an availability of intelligent spatial schedule without compromising the rate of production. There exists two critical problems ahead namely, the spatial occupation layout of pre-erection area and the emptying pattern in the spatial vicinity. The block shape is assumed be rectangular. The related input data's are the dates of erection (earliest as well as the latest), geometrical parameters of block available on pre-erection area, slack time and the like.

  • PDF

Thermal Distortion Analysis by Inconel Over-lay at Circular Moonpool Structures (인코넬 육성용접에 의한 원형 문풀구조 선체블록의 열변형해석)

  • Ha, Yun-Sok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.304-311
    • /
    • 2012
  • One of the main features of Drillship or FPSO is a moonpool structure. The moonpool structures have various accuracy tolerances according to their functions and targets. This study is mainly interested in roundness of a circular moonpool structure in FPSO. Because this structure needs abrasion-resistance at which bearing of machine touches on inner wall of moonpool, we should do over-lay welding widely and deeply by using Inconel weld material. But a general over-lay can cause a severe distortion at ship block structure. If we can analyze the roundness by thermal distortion under Inconel over-lay, we can establish a special erection policy by the results. In this study, we designed stress-strain curve for strain-boundary condition analysis by an elasto-plastic material property. The results made us to decide an appropriate ship-block size and policy of crane manipulation will follow for its capacity. If a structure that needs over-lay is not large, solid elements also are not a bad choice for FEM modeling. Therefore we also developed a standard of using strain-boundary method that shell elements are used as over-lay on solid element modeling.

Optimum Structural Design of Panel Block Considering the Productivity (생산성을 고려한 평블록의 최적 구조 설계)

  • Lee, Joo-Sung;Kim, Jong-Mun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.139-147
    • /
    • 2007
  • The ultimate goal of structural design is to find the optimal design results which satisfies both safety and economy at the same time. Optimum design has been studied for the last several decades and is being studied. in this study, an optimum algorithm which is based on the genetic algorithm has been applied to the multi-object problem to obtain the optimum solutions which minimizes structural weight and construction cost of panel blocks in ship structures at the same time. Mathematical problems are dealt at first to justify the reliability of the present optimum algorithm. And then the present method has been applied to the panel block model which can be found in ship structures. From the present findings it has been seen that the present optimum algorithm can reasonably give the optimum design results.