• Title/Summary/Keyword: shift-invariant wavelet transform

Search Result 16, Processing Time 0.025 seconds

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

The Digital Image Processing Method Using Triple-Density Discrete Wavelet Transformation (3중 밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.133-145
    • /
    • 2012
  • This paper describes the high density discrete wavelet transformation which is one that expands an N point signal to M transform coefficients with M > N. The double-density discrete wavelet transform is one of the high density discrete wavelet transformation. This transformation employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. And it is nearly shift-invariant. Similarly, triple-density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. Specifically, the spectrum of the first wavelet is concentrated halfway between the spectrum of the second wavelet and the spectrum of its dilated version. In addition, the second wavelet is translated by half-integers rather than whole-integers in the frame construction. This arrangement leads to high density wavelet transformation. But this new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard and double-density discrete wavelet transformation in terms of multiple directions. Resultingly, the proposed wavelet transformation services good performance in image and video processing fields.

Digital Image Processing Using Non-separable High Density Discrete Wavelet Transformation (비분리 고밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.165-176
    • /
    • 2013
  • This paper introduces the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. The high density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. This new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs and some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. A solution to this problem is a non separable method. The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Proposed wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, This method services good performance in image processing fields.

The Three Directional Separable Processing Method for Double-Density Wavelet Transformation Improvement (이중 밀도 웨이브렛 변환의 성능 향상을 위한 3방향 분리 처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.131-143
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform using 3 direction separable processing method, which is a discrete wavelet transform that combines the double-density discrete wavelet transform and quincunx sampling method, each of which has its own characteristics and advantages. The double-density discrete wavelet transform is nearly shift-invariant. But there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. The dual-tree discrete wavelet transform has a more computationally efficient approach to shift invariance. Also, the dual-tree discrete wavelet transform gives much better directional selectivity when filtering multidimensional signals. But this transformation has more cost complexity Because it needs eight digital filters. Therefor, we need to hybrid transform which has the more directional selection and the lower cost complexity. A solution to this problem is a the double-density discrete wavelet transform using 3 direction separable processing method. The proposed wavelet transformation services good performance in image and video processing fields.

2D Digital Image Processing Using High Density Discrete Wavelet Transformation (고밀도 이산 웨이브렛 변환을 이용한 2차원 디지털 영상처리)

  • Lim, Joong-Hee;Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • High-density discrete wavelet transformation is one way to overcome the disadvantages of the standard wavelet transform of shift invariant because it increases the number of subband signals. In this paper, high-density discrete wavelet transform consisting of three channels is applied in a two-dimensional image processing. Experimental results show that the proposed method is well satisfied with the shift invariant and is excellent directional selectivity because it could generate many subband images.

Iris recognition robust to noises

  • Kim, Jaemin;Jungwoo Won;Seongwon Cho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.42-45
    • /
    • 2003
  • This paper describes a new iris recognition method using shift-invariant subbands. First an iris image is preprocessed to compensate the variation of the iris image. Then, the preprocessed iris image is decomposed into multiple subbands using a shift invariant wavelet transform. The best subband among them, which have rich information for various iris pattern and robust to noises, is selected for iris recognition. The quantized pixels of the best subband yield the feature representation. Experimentally, we show that the proposed method produced superb performance in iris recognition.

  • PDF

Shift-Invariant uHMT Estimation for Wavelet-based Image Denoising (웨이블렛 기반 영상 잡음제거를 위한 천이 불변 uHMT 추정)

  • 윤근수;정원용
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.221-224
    • /
    • 2001
  • In this paper we propose a shift-invariant uHMT estimation for wavelet-based image denoising. The proposed estimation have just nine meta-parameter (independent of the size of the image and the number of wavelet scales) and requires no kinds of training. Also it solve visual artifacts resulted in the lack of shift-invariance in the DWT. The experimental results show that the proposed estimation is more effective than the other wavelet-based denoising by 0.5-ldB (PSNR) and allows an Ο(nlog n) in terms of performance speed.

  • PDF

An application of wavelet transform toward noisy NMR peak suppression

  • Kim, Daesung;Kim, Dai-Gyoung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • A shift-averaged Haar wavelet transform was introduced as a new and excellent tool to distinguish real peaks from the noise contaminated NMR signals. It is based on Haar wavelet transform and translation-invariant denoising process. Donoho's universal threshold was newly introduced to the shift-averaged Haar wavelet transform for the purpose of automated noise suppression, and was quantitatively compared with the conventional uniform threshold method in terms or threshold and signal to noise ratio (SNR). New algorithm was combined with a routine to suppress a large solvent peak by singular value decomposition (SVD). Combined algorithm was applied to the real spectrum that containing large solvent peak.

  • PDF

Quincunx Sampling Method for Performance Improvement of 2D High-Density Wavelet Transformation (2차원 고밀도 이산 웨이브렛 변환의 성능 향상을 위한 Quincunx 표본화 기법)

  • Lim, Joong-Hee;Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.179-191
    • /
    • 2013
  • The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously and good frequency property than the separable two dimensional schemes. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs. This paper proposed the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. Proposed wavelet transformation can service good performance in image processing fields.

Quincunx Sampling Method For Improvement of Double-Density Wavelet Transformation (이중 밀도 웨이브렛 변환의 성능 향상을 위한 Quincunx 표본화 기법)

  • Lim, Joong Hee;Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.171-181
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform(DWT) using quincunx sampling, which is a DWT that combines the double-density DWT and quincunx sampling method, each of which has its own characteristics and advantages. The double-density DWT is an improvement upon the critically sampled DWT with important additional properties: Firstly, It employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. Secondly, the double-density DWT is overcomplete by a factor of two, and Finally, it is nearly shift-invariant. In two dimensions, this transform outperforms the standard DWT in terms of denoising; however, there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. A solution to this problem is a quincunx sampling method. The quincunx lattice is a sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Proposed wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, This method services good performance in image processing fields.