• Title/Summary/Keyword: shielding method

Search Result 488, Processing Time 0.029 seconds

A Study on Improvement of Method for Measuring the Shield Performance of Shielding Enclosures (전자파 차폐실의 차폐효과 측정방법 개선에 관한 연구)

  • Yeon, Jae-Sung;Kim, Hie-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.350-353
    • /
    • 2009
  • The shielding enclosure is very essential device to test the electromagnetic wave power generated by various RF equipments. Some standards for the shielding enclosures were established to test them in right method. Generally, There are IEEE-STD-299 and MIL-STD-285 and NSA-65-6 of the method for measuring the effectiveness of shielding enclosures, the IEEE-STD-299 combined MIL-STD-285 and NSA-65-6 about the method for measuring shielding effectiveness(SE) about 1969 years, but, the measurement point of 299 proposal is many points(including shielding wall, seam, coner beat, shielding door, etc) and demand long time of measurement. To improve SE test method for shielding enclosures was studied and suggested to develop a proper test procedure. First, we measure reference level as frequency range and H/V polarization, secondly, measure leakage point, and finally, measure shield effect and calculate SE. Our method has a merit of the less measurement point than IEEE-STD-299, and shorten time than 299, and define representation SE of shielding enclosure effectively.

  • PDF

Literature Review on Material Development and Performance Evaluation Method for EMP Shielding Concrete (EMP 차폐 콘크리트 개발 및 성능평가 방법에 관한 문헌 연구)

  • Lee, Woong-Jong;Lee, Hwan;Kim, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.67-76
    • /
    • 2020
  • The purpose of this study was to derive the directionality of technology development of high-power electromagnetic pulse (EMP) shielding concrete and standardization of a shielding performance evaluation method. Because the EMP shielding mechanism of concrete has not been identified clearly, and the verification method for EMP shielding performance has not been standardized, it is difficult to compare the research results between researchers. The development direction of EMP shielding concrete was derived from a consideration of the electromagnetic wave loss mechanism of metal. The standardization direction for verifying the EMP shielding performance of concrete was derived from a consideration of the electrical properties of concrete and the shielding performance evaluation methods of previous studies. As a result, the development of electrically conductive concrete is required, and test methods classified by the electromagnetic wave loss mechanism should be applied. For quality verification, the development of EMP shielding concrete will be feasible and its performance can be evaluated if a test method referencing the generalized shielding evaluation method (MIL-STD, etc.) is applied.

Analysis of Shielding Effectiveness and Estimation of Shielding Factor in Conductive and Magnetic Shields (도전성 및 자성 차폐체의 차폐효과 해석과 차폐인수 산정)

  • Kang, Dae-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.30-40
    • /
    • 2013
  • In this study the method based on flux linkage in cell was introduced in calculation of eddy currents by cell method. According to this method eddy current distribution and the loss can be evaluated and since the shielding effectiveness by flux cancelation of eddy current can be analyzed, this method is applicable to design of conductive shield. And also the formula of shielding factor were so deduced as to be applicable to finite-width infinite-length shielding sheets and infinite-length underground cable shield. These formula are adaptable to magnetic materials as well as conductive materials. As the results of calculation in model shields are follows. In case of finite-width infinite-length shielding sheet, shielding effectiveness increases with increasing of conductivity. In case of infinite-length underground cable shield, the effectiveness become higher with increasing of permeability. Especially the effectiveness is very high in materials with both high conductivity and permeability in underground cable shield.

A Study on the Electromagnetic Pulse Shielding Effect of Concrete Wall Sprayed with Cu-based Metal (Cu계 금속을 용사한 콘크리트 벽체의 전자파 차폐 성능에 관한 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.18-19
    • /
    • 2020
  • The ElectroMagnetic Pulse (EMP) destroys social infrastructure at once and causes social chaos. However, currently major infrastructures are constructed of concrete that does not have electromagnetic shielding performance. In this study, using the arc metal spraying method is used to evaluate the shielding performance and construction performance of concrete. The electro-magnetic shielding effect is measured by fabricating a shielding room with reference to MIL-STD-188-125, and the construction performance is evaluated by measuring the adhesion strength of thin metal sprayed film-concrete. As a result of the study, when the metal spraying method is applied, the shielding effect is higher than that of the special electro-magnetic shielding concrete, and it is considered to be more economical than the existing metal plate (3~5 mm).

  • PDF

Comparison of Striking Distance Formulae and Their Effect on Lightning Shielding Analysis (뇌 차폐 해석에서 뇌격흡인 거리 수식과 영향 비교)

  • Kim, Sung-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.694-699
    • /
    • 2011
  • This paper compares the performance of lightning shielding analysis methods using the seven striking distance formulae in substation. For comparison, we evaluate the number of expected strikes and exposed area using WinIGS Software. Seven striking distance formulae are compared using the electrogeometric model analysis and the rolling sphere method. Based on the electrogeometric model analysis, the risk of shielding failure in either the whole substation or parts of it is determined. According to the simulation results, one can justify whether the substation satisfies the criterion of shielding design. In particular, according to the rolling sphere method, the exposed areas in substation determine the location of the additional shielding poles or shield wires. Therefore, the installation of the additional shielding poles and shield wires in substation was accepted by shield design at the phase conductors exposed in the larger area.

Performance Analysis of Low-level Radiation Shielding Sheet with Diamagnetic Nanoparticles

  • Cho, Jae-Hwan;Kim, Myung-Sam
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical radiation shielding fiber was then evaluated. First, diamagnetic bismuth oxide, an element which, among elements that have a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next, 10-100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide ($Bi_2O_3$), the average particle size of which is $1-500{\mu}m$, for approximately 10 minutes. The manufactured bismuth oxide was formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study, the X-ray shielding effect of the shielding sheet with 0.1 mm thickness was about 55.37% against 50 keV X-ray, and the X-ray shielding effect in the case of 1.0 mm thickness showed shielding characteristics of about 99.36% against 50 keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using a scattering beam at a low level exposure.

Production and Utility Assessment of Pediatric Genital Shields Using 3D Printing Technology with Colorjet 3D Printing (결합제 분사 방식 3D 프린팅 기술을 활용한 소아 생식기 차폐체 제작 및 유용성 평가)

  • In-Ja Lee;Da-Yeong Hong
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this study, the aim was to assess the shielding performance of different 3D printing materials, specifically those produced using FDM, SLA, and CJP methods, with a focus on their application as shielding devices in clinical settings. Additionally, the weight of lead shielding materials can evoke reluctance in pediatric patients undergoing X-ray imaging. A total of 12 materials were printed using their respective 3D printers. These materials were then subjected to X-ray testing using diagnostic X-ray equipment and an exposure meter. The goal was to evaluate their shielding capabilities in comparison to 1 mm lead. The results of this evaluation revealed that VisiJet PXL-Pastel, produced using the CJP method, exhibited the highest shielding performance. Therefore, VisiJet PXL-Pastel by CJP method was selected for the creation of a shielding device designed for pediatric reproductive organs. Subsequent tests demonstrated that both the newly created shielding device and conventional lead shielding equipment achieved the same maximum shielding rate at 50 kVp. Specifically, the shielding rate for the 3D printed device was measured at 84.53%, while the conventional lead shielding equipment, categorized as Apron1 (85.74%), Apron2 (99.98%), and Apron3 (99.04%), demonstrated similar performance. In conclusion, the CJP-produced VisiJet PXL-Pastel material showcased excellent radiation shielding capabilities, allowing for anatomical observations of the target organs and their surrounding structures in X-ray images. Furthermore, its lower weight in comparison to traditional lead shielding materials makes it a clinically practical and useful choice, particularly for pediatric applications.

Treatment of non-resonant spatial self-shielding effect of double heterogeneous region

  • Tae Young Han;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.749-755
    • /
    • 2023
  • A new approximation method was proposed for treating the non-resonant spatial self-shielding effects of double heterogeneous region such as the double heterogeneous effect of VHTR fuel compact in the thermal energy range and that of BP compact with BISO. The method was developed based on the effective homogenization method and a spherical unit cell model with explicit coated layers and a matrix layer. The self-shielding factor was derived from the relation between the collision probabilities for a double heterogeneous compact and the effective cross section for the homogenized compact. First, the collision probabilities and transmission probabilities for all layers of the spherical model were calculated using conventional collision probability solver. Then, the effective cross section for the homogenized sphere cell representing the homogenized compact was obtained from the transmission probability calculated using the probability density function of a chord length. The verification calculations revealed that the proposed method can predict the self-shielding factor with a maximum error of 2.3% and the double heterogeneous effect with a maximum error of 200 pcm in the typical VHTR problems with various packing fractions and BP compact sizes.

A Study on the Shielding of Iodine 131 Using Monte Carlo Simulation (몬테칼로 모사를 이용한 방사성옥소 I-131의 차폐체에 대한 효용성 연구)

  • Jang, Dong-Gun;Yang, Seoung-Oh;Kim, Jung-Ki;Lee, Sang-Ho;Choi, Hyung-Seok;Bae, Cheol-Woo
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • This study was designated to investigate the bremsstrahlung and radiation dose by beta rays. Radiation attenuation from I-131 treatment ward was analyzed using radio protective apron. Shielding materials which is included lead or water were simulated in Monte Carlo Simulation then the spectrum on interaction was analyzed. The shielding materials were categorized according to the thickness. 0.25mm and 0.5mm thick lead and 0.1mm and 0.2mm thick water shielding materials were configured in Monte Carlo Simulation for this study. Only lead shielding method and water plus lead shielding method were carried. As a results, when 0.5mm thick lead shielding method was performed, the radiation dose was similar to the results with water plus lead shielding method. In case of using 0.25mm thick lead shielding, the shielding effect was somewhat less. However, that shielding method cause dose reduction of about 60% compare with non-shielding material.

Analysis for Shielding Effectiveness of Metal Shielding Layer within Near-Field of Noise Source (노이즈 소스 근거리장에 위치한 금속 차폐막의 차폐효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of the shielding layer thickness was analyzed when the metal shielding layer was placed in the near field of the magnetic probe and the noise source. Microstrip lines were used as noise source, and graphite and ferrite were selected as metal shielding materials. The magnetic probe uses the electromagnetic radiation measurement method using the magnetic probe by applying the IEC 61967-6 method. The transmission coefficient between the microstrip line and the magnetic probe was analyzed. The distance between the two was 1 mm for a single shielding layer and 5 mm for a multiple shielding layer. The thickness of the shielding layer was changed to 5 um, 10 um, 30 um, and 50 um. When the frequency was changed from 150 kHz to 1 GHz, a maximum shielding effectiveness (SE) of 44.9 dB was obtained.