• Title/Summary/Keyword: shield-tunnel segment lining

Search Result 42, Processing Time 0.024 seconds

Cracking Reason Analysis of Concrete Lining Segment with TBM Driving (TBM 진행에 따른 라이닝 세그먼트 균열 원인 분석)

  • Kim, Moon-Kyum;Jang, Kyung-Gook;Won, Jong-Hwa;Kim, Tae-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.624-629
    • /
    • 2008
  • When TBM excavates a tunnel, existing concrete lining segments are used as supporting structures for driving force. Axial stress on the lining segments are apt to be large in case of direct driving force. However, it drastically decline as it is farther and father from TBM and later, it tends to converge after a certain point. Such tendencies show similar results of finite element analysis. At the initial intervals, the values of finite element analysis are larger, while at the later intervals, the actual stress values are larger. It concludes that such tendencies are attributable to that the concrete lining segments have partially burst and cracked in the axial direction at the initial intervals. And differences of stresses at the later intervals are created by the changed plasticity of ground and the friction on the external sides of the lining segments.

  • PDF

Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel (쉴드 터널용 프리캐스트 세그먼트 콘크리트 라이닝의 내화성능)

  • Han, Byung-Chan;Harada, kazunori;Kwon, Young-Jin;Kim, Yun Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.95-105
    • /
    • 2014
  • Reinforced concrete (RC) shield tunnel lining must be designed for fireproof performance because the lining is sometimes exposed to very high temperature due to traffic accidents. Both experimental and numerical studies are carried out to evaluate fire resistance performance of precast RC tunnel lining systems. In the experimental studies, six full-scale precast RC tunnel segments are exposed to fire in order to examine the influence of various parameters on the fire resistance performance of precast RC tunnel lining. We used the temperature curve of the RABT criteria, which are severe conditions of fire temperatures. The fire test showed that the explosive spalling was not observed by substituting concrete to PP fiber reinforced concrete. A transient heat flow analysis was carried out in consideration of the material properties that change with temperature, and the results showed good agreement with the test results.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

Case study on design and construction for cross-connection tunnel using large steel pipe thrust method in soil twin shield tunnels underneath airport (공항하부 토사 병설 쉴드터널에서 대구경 강관추진에 의한 횡갱 설계/시공사례 연구)

  • Ahn, Chang-Yoon;Park, Duhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.325-337
    • /
    • 2021
  • On the road and rail tunnels, the evacuation pathway and facilities such as smoke-control and fire suppression system are essential in tunnel fire. In the long twin tunnels, the cross-connection tunnel is usually designed to evacuate from the tunnel where the fire broke out to the other tunnel. In twin shield tunnels, the segment lining has to be demolished to construct the cross-connection tunnel. Considering the modern shield TBM is mostly the closed chamber type, the exposure of underground soil induced by removal of steel segment lining is the most danger construction step in the shield tunnel construction. This case study introduces the excavation method using the thrust of large steel pipe and reviews the measured data after the construction. The large steel pipe thrust method for the cross-connection tunnel can stabilize the excavated face with the two mechanisms. Firstly, the soil in front of excavated face is cylindrically pre-supported by the large steel pipe. Secondly, the excavated face is supported by the plugging effect caused by the soil pressed into the steel pipe. It was reviewed that the large steel pipe thrust method in the cross-connection tunnel is enough to secure the construct ability and stability in soil from the measurement results about the deformation and stress of steel pipe.

Tunneling in Severe Groundwater Inflow Condition (지하수 과다유입 조건하에서의 터널굴착)

  • Lee, Young-Nam;Kim, Dae-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.67-76
    • /
    • 2006
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3 m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3km upstream of the powerhouse and headrace tunnel of 20km in length and penstock of 440m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflowraised the water level inside tunnel to 70cm, 17% of tunnel diameter (3.9m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made forthe excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

A study on the coefficients of variation of seismic load effect for the limit state design of shield tunnel based on the reliability analysis (신뢰성 기반 쉴드 터널의 한계상태설계를 위한 지진하중 효과의 변동계수에 관한 연구)

  • Park, Young-Bin;Kim, Do;Byun, Yosep;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.311-321
    • /
    • 2020
  • In this study, coefficient of variation for the seismic load effect on the segment lining was calculated. The statistical characteristics of the soil property were analyzed for the probability characteristics of domestic soil. In order to calculate the coefficient of variation for the seismic load effect, the MCS technique was applied, and the closed-form equation was applied to calculate the seismic load effect. As a result of calculating the coefficient of variation, the coefficient of variation of the seismic load effect on the weathered soil was analyzed in the range of 0.06~0.15, and the coefficient of variation was judged to be used as basic data for designing the limit state of the shield tunnel on seismic condition.

Establishment of Maintenance and Monitoring Standards for Shield and TBM Tunnels (Shield 및 TBM 터널의 유지관리계측 관리기준 설정에 관한 연구)

  • Jong-Tae Woo
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: The objective of this study was to improve the tunnel maintenance and monitoring technology by establishing the maintenance, management, and monitoring standards for shield and TBM tunnels, which had been applied more in recent years. Method: This study comprehensively analyzed and compared the data and model simulations of Seoul Subway Lines 7 and 9 and Bundang Line, shield and TBM tunnels in South Korea, tunnels in France and Japan, and Channel Tunnel in the UK. Result: This study set maintenance and monitoring standards when there was no design estimate based on numerical analyses such as section design and section analysis regarding the maintenance and monitoring section of shield and TBM tunnels. Conclusion: It is necessary to determine safety by comprehensively considering not only each monitoring item but also the changing trend and correlation of all items and compensation of the tunnel.

The effect of tunnel ovality on the dynamic behavior of segment lining (Ovality가 세그먼트 라이닝의 동적 거동 특성에 미치는 영향)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.423-446
    • /
    • 2023
  • Shield TBM tunnel linings are segmented into segments and rings. This study investigates the response characteristics of the stress and displacement of the segment lining under seismic waves through modeling that considers the interface behavior between segments by applying a shell interface element to the contact surface between segments and rings. And there is no management criteria for ovaling deformation of segment linings in Korea. So, this study the ovality criteria and meaning of segment lining. The results of study showed that the distribution patterns of stress and displacement under seismic waves were similar between continuous linings and segment linings. However, the maximum values of stress and displacement showed differences from segment linings. The stress distribution of the continuous lining modeled as a shell type has a stress distribution that has continuity in the 3D cylindrical shape, but the segment lining is concentrated outside the segment, and the largest stress occurs at the location where the contact surface between the segment and the ring is concentrated. This intermittent and localized stress distribution shows an increasing as the ovality of the lining increases at seismic waves. The ovality at which the increase in stress distribution begins to show irregularity and localization is about 150‰. Ovality of 150‰ is an unrealistic value that cannot represent actual lining deformation. Therefore, the ovality of the segment lining increase with depth, but it does not have a significant impact on the stability caused by seismic load.

Numerical analysis of non-uniform segmental lining design effects on large-diameter tunnels in complex multi-layered strata

  • Joohyun Park;Seok-Jun Kang;Jun-Beom An;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.553-569
    • /
    • 2024
  • In recent tunneling projects, encounters with multi-layered strata have become more frequent as the desired scale of tunneling increases. Despite substantial practical experience, the design of large-diameter shield-driven tunnels often simplifies the surrounding ground as uniform, overlooking the complexities introduced by non-uniform geotechnical factors. This study comparatively analyzed the influence of design factors, particularly segment stiffness and joint parameters, on segmental lining behavior in layered ground conditions using numerical methods. A comprehensive parametric study revealed the significant impact of deformative interaction between the lining and the soft top soil layer on overall tunnel behavior. Permitting lining deformation in the soft soil layer effectively mitigated the induced internal forces but resulted in considerable tunnel lining convergence, adopting a peanut-shaped appearance. From a practical design perspective, application of a soft segment with lower stiffness near the stiff soil layer is an economically advantageous approach, alleviating internal forces within an acceptable convergence level. Notably, around the interfaces between soil layers with different stiffnesses, the induced internal forces in the lining were minimized based on joint rotational stiffness and location. This indicates the possibility of achieving an optimal design for segmental lining joints under layered ground conditions. Additionally, a preliminary design method was proposed, which sequentially optimizes parameters for joints located near soil layer interfaces. Subsequently, a specialized design based on the proposed method for complex multi-layered strata was compared with a conventional design. The results confirmed that the internal force was effectively relieved at an allowable lining deflection level.

Development of performance assessment criterion for structures of shield TBM tunnel (쉴드 TBM 터널의 구조물 성능 평가 기준 개발)

  • Seong, Joo-Hyun;Lee, Yu-Seok;Hong, Eun-Soo;Byun, Yo-Seph
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.553-561
    • /
    • 2015
  • In this study, the performance assessment criterion for reasonable maintenance of shield TBM tunnel was presented. The performance assessment items such as crack, leakage, breakage, spalling, exfoliation/detachment, efflorescence, quality condition, exposure of steel, carbonation, faulting step, bolts condition, drainage condition, ground condition, contact section condition and conduit condition were selected by analyzing domestic and foreign performance assessment criterions and investigating segment lining deterioration cases through the site investigation and in-depth inspection analysis result on the shield TBM tunnel. In addition, the reasonable weight using AHP (Analytic Hierarchy Process) were estimated.