• Title/Summary/Keyword: shell crosslinked micelles.

Search Result 2, Processing Time 0.014 seconds

Drug Release Behavior of Poly($\varepsilon$-caprolactone )-b-Poly( acrylic acid) Shell Crosslinked Micelles below the Critical Micelle Concentration

  • Hong Sung Woo;Kim Keon Hyeong;Huh June;Ahn Cheol-Hee;Jo Won Ho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.397-402
    • /
    • 2005
  • To explore the potential of shell crosslinked micelle (SCM) as a drug carrier, the drug release behavior of poly($\varepsilon$-caprolactone)-b-poly(acrylic acid) (PCL-b-PAA) SCMs was investigated. PCL-b-PAA was synthesized by ring opening polymerization of $\varepsilon$-caprolactone and atom transfer radical polymerization of tert-butyl acrylate, followed by selective hydrolysis of tert-butyl ester groups to acrylic acid groups. The resulting amphiphilic polymer was used to prepare SCMs by crosslinking of PAA corona via amidation chemistry. The drug release behavior of the SCMs was studied, using pyrene as a model drug, and was compared with that of non-crosslinked micelles, especially below the critical micelle concentration (CMC). When the shell layers were crosslinked, the drug release behavior of the SCMs was successfully modulated at a controlled rate compared with that of the non-crosslinked micelles, which showed a burst release of drug within a short time.

Synthesis of Poly (lactide)-b-Poly (glycerol) (PLA-b-PG) Block Copolymer (Poly (lactide)-b-Poly (glycerol) 블록 공중합체의 중합)

  • Lee, John Hwan;Oh, Seong-Geun;Kim, Yong-Jin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.165-174
    • /
    • 2017
  • This study reports a synthesis of an amphiphilic linear block copolymer consisting of a hydrophobic poly (lactide) (PLA) block and a hydrophilic hyperbranched polyglycerol (hbPG) block, PLA-b-hbPG. Simple chemical modification of the hbPG block with 4-hydroxycinnamic acid (CA) led to a photo-crosslinkable block copolymer, PLA-b-hbPG-CA. Nanosized micelles of the block copolyemrs were used as drug carriers for sustainable release. The hbPG shell made of a small molecular weight hbPG block showed excellent hydrophilicity, which can minimize in vivo toxicity. The UV-crosslinked PLA-b-hbPG-CA micelles loaded with drugs colud be served as a drug delivery carrier for its biocompatibility and self-assembled structures.