• Title/Summary/Keyword: shearing stress

Search Result 217, Processing Time 0.033 seconds

Mechanical and Rheological Properties of Rice Plant (수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun;Cha, Gyun Do
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

Effect of Pre-shearing and Temperature on the Yield Stress of Stirred Yogurt

  • Yoon, Won Byong
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.70-73
    • /
    • 2009
  • The yield stress of stirred yogurt was measured by the vane viscometer at different pre-shearing conditions, such as pre-shear speed, pre-shear time, and wait time, and temperature (12-38${^{\circ}C}$). The yield stress ranged from ~17.6 to 10 Pa and from 34.2 to 11.9 Pa, depending on the pre-shearing conditions and temperature, respectively. The preshear speed and the wait time significantly affected the yield stress. The temperature dependence of the yield stress was described by the Eyring's kinetic model. The linear function of the temperature on the yield stress was limited at the 22${^{\circ}C}$, and at the above 22${^{\circ}C}$, the yield stress was maintained to be a constant (~12.5 Pa).

Effect of shearing on some physiological and hormonal parameters in Akkaraman sheep

  • Pehlivan, Erkan;Kaliber, Mahmut;Konca, Yusuf;Dellal, Gursel
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.848-855
    • /
    • 2020
  • Objective: Shearing is one of the practices that is applied periodically to fiber producing animals, which can also alter resistance of animals to high temperatures in especially summer months. This study aimed to investigate effects of shearing on some physiological and hormonal parameters in Akkaraman sheep during summer season. Methods: This study was carried out on 39 non-pregnant Akkaraman ewes (aged 1.5 years at the beginning of experiment). The 39 ewes were chosen randomly from the flock belonging to the Erciyes University and they were assigned to two groups as follows: i) group A (n = 20) designed as the control group, they were shorn and group B (n = 19) designed as the experimental group, they were unshorn. Prior to the shearing (-1 day) and on days 1, 7, 15, 30, 45, 60, 75, and 90 following the shearing, blood samples were taken from the vena jugularis of each sheep. Cortisol, β-endorphin, growth hormone (GH), thyroxine (T4), triiodothyronine (T3), and heat shock protein 70 (HSP-70) concentrations were determined using the enzyme immunoassay method. Body weight (BW), rectal temperature (RT), pulse rate (PR), and respiratory rate (RR) of each sheep were recorded at the same time. The data obtained were analyzed using two-way repeated measures analysis of variance. Results: Statistical analysis showed a significant effect of shearing×period interaction (p<0.01) and a significant effect of period (p<0.01) on BW, HSP-70, cortisol, T4 and RT, PR, GH, β-endorphin, T3, respectively. Also these analysis showed no significant effect of shearing×period interaction or period on RR. Conclusion: The results showed that the thermoregulation abilities of sheep were affected by shearing treatment and the shorn ewes were less affected by heat stress. In conclusion, based on the data of this study, shearing can be considered as a necessary management practice that requires protection for sheep from the effect of heat stress.

A Study on Development of Channel Cutting Machine (형재 절단기 개발에 관한 연구)

  • 이춘만
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.140-143
    • /
    • 1999
  • The major objective of the present paper is to develop a channel cutting machine and to establish an analytical technique for actual shearing process. Isothermal finite element(FE)-simulation of the shearing process are carried out using FE software DEFORM. The element-kill method has enabled the achievement of FE-simulation from the initial stage to the final stage of the shearing process. The effects of the punch-die clearance on the shearing process are investigated.

  • PDF

Exact solutions of the piezoelectric transducer under multi loads

  • Zhang, Taotao;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.413-431
    • /
    • 2011
  • Under the external shearing stress, the external radial stress and the electric potential simultaneously, the piezoelectric hollow cylinder transducer is studied. With the Airy stress function method, the analytical solutions of this transducer are obtained based on the theory of piezo-elasticity. The solutions are compared with the finite element results of Ansys and a good agreement is found. Inherent properties of this piezoelectric cylinder transducer are presented and discussed. It is very helpful for the design of the bearing controllers.

Analysis of hemodynamics in cerebral artery related to moyamoya disease (모야모야병과 연관된 뇌동맥에서의 혈류역학 분석)

  • Lee, Seung-Cheol;Lim, Ki-Moo;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1647-1650
    • /
    • 2008
  • The moyamoya disease is a type of cerebrovascular disease which produces thin abnormal blood vessels like haze in the brain base because the end of internal carotid artery which supplies about 80% of blood is blocked. Regarding this moyamoya disease, the shearing stress and thrombus generation are mentioned as its main causes. This study three-dimensionally implemented the ICA, ACA, and MCA parts of the cerebrovascular configuration related to the moyamoya disease, and analyzed the hydrodynamic phenomenon with the commercial program ADINA. In particular, the correlations between shearing stress and speed distribution according to the branch angle of ACA and MCA. A numerical analysis found that the greater the branch angle of ACA and MCA, the lower the shearing stress and the greater the stationary area of the flow.. Put Abstract text here.

  • PDF

A New Tangent Stiffness for Anisotropic Elasto-Viscoplastic Analysis of Polycrystalline Deformations (다결정재 소성변형의 탄소성 해석을 위한 접선강성 개발)

  • Yoon, J.H.;Huh, H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.349-352
    • /
    • 2006
  • The plastic deformation of polycrystalline materials is induced by changes of the microstructure when the loading is beyond the critical state of stress. Constitutive models for the crystal plasticity have the common objective which relates microscopic single crystals in the crystallographic texture to the macroscopic continuum point. In this paper, a new consistent tangent stiffness for the anisotropic elasto-viscoplastic analysis of polycrystalline deformation is developed, which can be used in the finite element analysis for the slip-dominated large deformation of polycrystalline materials. In order to calculate the consistent tangent stiffness, the state function is defined based on the consistency condition between the elastic and plastic stress. The rate of shearing increment($\Delta{\gamma}^{\alpha}$) is calculated with satisfying the consistency condition. The consistency condition becomes zero when the trial resolved shear stress($\tau^{{\alpha}^*}$) becomes resolved shear stress($\tau^{\alpha}$) at every step. Iterative method is utilized to calculate the rate of shearing increment based on the implicit backward Euler method. The consistent tangent stiffness can be formulated by differentiating the rate of shearing increment with total strain increment after the instant rate of shearing increment converges. The proposed tangent stiffness is applied to the ABAQUS/Standard by implementing in the ABAQUS/UMAT.

  • PDF

Shearing and Electro-optical Properties of Stressed Cholesteric Liquid Crystal Cells

  • Lee, Jung-Min;Kang, Dae-Seung
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.91-93
    • /
    • 2010
  • The shearing effects on the electro-optical properties of a stressed cholesteric liquid crystal were investigated. A photopolymer was dispersed in the cholesteric liquid crystal cell. By carefully choosing the mixing ratio between the liquid crystal and the photoreactive monomer, and by applying suitable mechanical shearing on the substrates, a cholesteric liquid crystal display with a low threshold voltage and no alignment layer was demonstrated.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.