• Title/Summary/Keyword: shear-wall structure

Search Result 335, Processing Time 0.022 seconds

Resilient structures in the seismic retrofitting of RC frames: A case study

  • Pallares, Francisco J.;Dominguez, David;Pallares, Luis
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • It is very important to allocate valuable resources efficiently when reconstructing buildings after earthquake damage. This paper proposes the use of a simple seismic retrofitting system to make buildings more resilient than the stiffer systems such as the shear walls implemented in Chile after the earthquake in 2010. The proposal is based on the use of steel chevron-type braces in RC buildings as a dual system to improve the seismic performance of multistory buildings. A case study was carried out to compare the proposal with the shear wall solution for the typical seismic Chilean RC building from the structural and economic perspectives. The results show that it is more resilient than other stiffer seismic solutions, such as shear walls, reduces the demand, minimizes seismic damage, gives reliable earthquake protection and facilitates future upgrades and repairs while achieving the level of immediate occupancy without the costs of the shear walls system.

The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.563-576
    • /
    • 2019
  • According to The Concrete Centre, in the UK shear walls have become an inseparable part of almost every reinforced concrete frame building. Recently, the construction industry has questioned the need for shear walls in low to mid-rise RC frame buildings. This study tried to address the issue in two stages: The first stage, the feasibility of removing shear walls in an existing design for a residential building where ETABS and CONCEPT software were used to investigate the structural performance and cost-effectiveness respectively. The second stage, the same structure was examined in various locations in the UK to investigate regional effects. This study demonstrated that the building without shear wall could provide adequate serviceability and strength within the safe range defined by Eurocodes. As a result, construction time, overall cost and required concrete volume are reduced which in turn enhance the sustainability of concrete construction.

An Experimental Study on the Vertical Vibration Transfer according to Shear Wall Building Structures due to Exciting Vibration Forces (전단벽식 건축구조물의 수직진동 전달특성에 관한 실험연구)

  • Chun Ho-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.159-166
    • /
    • 2005
  • The vibration on building structures due to exciting vibration forces has been studied only for the vibration level on existing buildings. Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the characteristics of vertical vibration transfer in terms of the directions of transfer(upward transfer and downward transfer) on the shear wall building structures due to 2 type vibration forces. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on one building structure. The results of this study suggest that the characteristics of vertical vibration transfer are different in terms of the directions of transfer.

  • PDF

Characteristics of Vertical Vibration Transfer according to RC Structure Systems (RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교)

  • Chun, Ho-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF

Numerical Study on Flow Characteristics of Synthetic Jet with Slot Exit (Synthetic Jet 출구 형상의 변화에 따른 유동 특성 파악을 위한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.356-361
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex, however, supply fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is fanned from slot center to end and developed in flow direction. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. As a result, circular slot is a more suitable candidate for delaying flow separation.

  • PDF

A Study on the Bond Strength of Wall-Slab Joint of Steel Plate-Concrete Structures (SC구조의 벽-바닥 접합부의 정착강도에 관한 연구)

  • Choi, Kyong-Min;Kim, Ki-Sung;Kim, Byoung-Kook;Kim, Won-Ki;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.321-324
    • /
    • 2006
  • An experimental study on the bond strength of wall-slab joint in SC(steel plate-concrete) structure was performed. Six-full scale specimens were tested. Specimens were constructed with key variables, such as, development length, location of the bar and quantity of the shear bar. The experimental results, show that as the development length and quantity of the shear bar increase, the bond strength increases. As the bars is located on the inside the stud bolt, the bond performance was highly increased compared to the bars located out of plane of the stud bolts.

  • PDF

Model verification and assessment of shear-flexure interaction in pile foundations

  • Lemnitzer, Anne;Nunez, Eduardo;Massone, Leonardo M.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.141-163
    • /
    • 2016
  • Fiber models have been developed and applied to various structural elements such as shear walls, beams and columns. Only scarcely have fiber models been applied to circular foundation systems such as cast in drilled holes shafts (CIDH). In pile foundations with constraint head boundary conditions, shear deformations can easily contribute to the lateral pile response. However, soil structure interaction formulations such as the p-y method, commonly used for lateral pile design, do not include structural shear deformations in its traditional derivation method. A fiber model that couples shear and axial-bending behavior, originally developed for wall elements was modified and validated on circular cross sections (columns) before being applied to a 0.61 m diameter reinforced concrete (RC) pile with fixed head boundary conditions. The analytical response was compared to measured test results of a fixed head test pile to investigate the possible impact of pile shear deformations on the displacement, shear, and moment profiles of the pile. Results showed that shear displacements and forces are not negligible and suggest that nonlinear shear deformations for RC piles should be considered for fixed-head or similar conditions. Appropriate sensor layout is recommended to capture shear deformation when deriving p-y curves from field measurements.

Structural Behavior of Wall-Type Structure with the Application of Slip-Form System (슬립폼 공법으로 건설된 벽식 구조의 거동에 관한 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.157-168
    • /
    • 1995
  • The structural performance of Slip-Form system was examined to make use of many advantages of fast construction and high quality c0ncret.e. However, the separate cor~struction of wall and slabs may cause some weaknesses around the wall-slab connection region. Thus, the purpose of the study is to examine the structural performance of wall-type structure constructed by Slip-Form method and to develop an efficient connection system between wall and slabs. In order to investigate the system, 7 wall specimens and 8 wall-slab joint specimens were tested and the experimental results were compared with the design equations and theoretical analysis. A satisfactory performance was obtained from the wall specimen tests. However, wall-slab joint specimens with rebar connection materials I Ilalfen] were shown that. the strength of' wall should be checked during design porocess.

An Experimental Study on the Reinforcement of Low-Rise RC Structure for Seismic Performance (저층 RC 건물의 내진성능 보강에 관한 실험적 연구)

  • Kim, Dongbaek;Lee, Byeonghoon;Kwon, Soondong;Lee, Induk
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • Nowaday, most of the low-rise concrete structures which have less than five stories were built before the intensified seismic code was established 2005. According to the fact that our country is not a safety zone ay more, studies are need to reinforce the seismic performance of that structures. The basic frame of low-rise structure are consist of beams and columns with partition walls, therefore that are very weak about secondary wave of earthquake because of the high stiffness. The partition wall are consist of open channel for sunlight or ventilation and intermediate wall. The intermediate walls will enhance the stiffness of columns, but will cause shear failure with short column effects because of the reduced effective depth. But we don't have studies and adequate design code for partition wall effects, therefore some more studies are need for these facts.