• 제목/요약/키워드: shear yielding

검색결과 250건 처리시간 0.022초

Influence of the Adhesive, the Adherend and the Overlap on the Single Lap Shear Strength

  • da Silva, Lucas F.M.;Ramos, J.E.;Figueiredo, M.V.;Strohaecker, T.R.
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.1-9
    • /
    • 2006
  • The single lap joint is the most studied joint in the literature in terms of both theory and practice. It is easy to manufacture and the lap shear strength is a useful value for strength assessment and quality control. Simple design rules exist such as the one present in standard ASTM 1002 or in a recent paper by Adams and Davies. The main factors that have an influence on the lap shear strength are the type of adhesive, i.e. ductile or brittle, the adherend yield strength and the overlap length. The overlap increases the shear strength almost linearly if the adhesive is sufficiently ductile and the adherend does not yield. For substrates that yield, a plateau is reached for a certain value of overlap corresponding to the yielding of the adherend. For intermediate or brittle adhesives, the analysis is more complex and needs further investigation. In order to quantify the influence of the adhesive, the adherend and the overlap on the lap shear strength, the experimental design technique of Taguchi was used. An experimental matrix of 27 tests was designed and each test was repeated three times. The influence of each variable could be assessed as well as the interactions between them using the statistical software Statview. The results show that the most important variable on the lap shear strength is the overlap length followed by the type of adherend.

  • PDF

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

사장교 케이블 진동감소용 납-전단 댐퍼의 설계 (Design of Lead-Shear Damper for Stay Cables)

  • 안상섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.490-495
    • /
    • 2000
  • This paper presents the dynamic behavior of stay cable with Lead-Shear damper( LSD) near the support. This kind of research about the dynamic behavior of LSD is essential to design LSD in order to mitigate the ambient vibration of stay cable. The hysteresis curve of LSD was assumed to be perfect elasto-plastic behavior based on the real hysteretic behavior of such lead-based dampers. Mechanical model of LSD was equivalent Kelvin model and sag effect of stay cable was considered. Yielding force (also referred as size) of LSD was selected as a design parameter. Effects of tension of stay cable and installation point of LSD were studied. It was found that optimal size of LSD exists for each case of stay cable.

  • PDF

Strength Prediction of Corbels Using Strut-and-Tie Model Analysis

  • Kassem, Wael
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권2호
    • /
    • pp.255-266
    • /
    • 2015
  • A strut-and-tie based method intended for determining the load-carrying capacity of reinforced concrete (RC) corbels is presented in this paper. In addition to the normal strut-and-tie force equilibrium requirements, the proposed model is based on secant stiffness formulation, incorporating strain compatibility and constitutive laws of cracked RC. The proposed method evaluates the load-carrying capacity as limited by the failure modes associated with nodal crushing, yielding of the longitudinal principal reinforcement, as well as crushing or splitting of the diagonal strut. Load-carrying capacity predictions obtained from the proposed analysis method are in a better agreement with corbel test results of a comprehensive database, comprising 455 test results, compiled from the available literature, than other existing models for corbels. This method is illustrated to provide more accurate estimates of behaviour and capacity than the shear-friction based approach implemented by the ACI 318-11, the strut-and-tie provisions in different codes (American, Australian, Canadian, Eurocode and New Zealand).

Analytical performance evaluation of modified inclined studs for steel plate concrete wall subjected to cyclic loads

  • Lim, Jin-Sun;Jeong, Young-Do;Nam, Jin-Won;Kim, Chun-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • 제17권2호
    • /
    • pp.227-240
    • /
    • 2016
  • An analytical study was conducted to investigate the effect of the shape and spacing of modified inclined studs used as shear connector between concrete and steel plate on the cyclic behavior of steel plate concrete (SC) shear wall. 9 different analysis cases were adopted to determine the optimized shape and spacing of stud. As the results, the skeleton curves were obtained from the load-displacement hysteresis curves, and the ultimate and yielding strengths were increased as the spacing of studs decrease. In addition, the strength of inclined studs is shown to be bigger compared to that of conventional studs. The damping ratios increased as the decrease of stiffness ratio. Finally, with decreasing the spacing distance of studs, the cumulative dissipated energy was increased and the seismic performance was improved.

고강도 콘크리트를 이용한 철근콘크리트 기둥 부재의 연성평가에 관한 연구 (An Analytical Evaluation on the Ductility of Reinforced High-Strength Concrete Columns)

  • 장일영;송재호;한상묵;박훈규
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.57-66
    • /
    • 2000
  • The ductility is an important consideration in the design of reinforced concrete structures. In the seismic design of reinforced concrete columns, it is necessary to allow for relatively large ductilities that the seismic energy be absorbed without shear failure of significant strength degradation after the reinforcement yielding in columns. Therefore, prediction of the ductility should be as accurate as possible. This research investigate the ductile behavior of rectangular reinforced high-strength concrete columns like as bridge piers with confinement steel. The effects on the ductility of axial load, lateral reinforcement ratio, longitudinal reinforcement ratio, shear span ratio, and compressive strength of concrete were investigated analytically using layered section analysis. as the results, it was proposed the proper relationship between ductility and variables and formulated into equations.

On the Ductility of High-Strength Concrete Beams

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Sung-Soo;Kim, Jong-Hoe;Kim, Yong-Gon
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.115-122
    • /
    • 2008
  • Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. Therefore, prediction of the ductility should be as accurate as possible. The principal aim of this paper is to present the basic data for the ductility evaluation of reinforced high-strength concrete beams. Accordingly, 23 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive strength of 40, 60, and 70MPa. The test results were then reviewed in terms of flexural capacity and ductility. The effect of concrete compressive strength, web reinforcement ratio, tension steel ratio, and shear span to beam depth ratio on ductility were investigated experimentally.

Behavior of light weight sandwich panels under out of plane bending loading

  • Ganapathi, S. Chitra;Peter, J. Annie;Lakshmanan, N.;Iyer, N.R.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.775-789
    • /
    • 2016
  • This paper presents the flexural behavior & ultimate strength performance of innovative light weight sandwich panels of size $3{\times}1.2m$ with two different solidity ratios viz. 0.5 and 0.33 under out of plane bending load. From the experimental studies, it is observed that the flexural strength and the stiffness are increased by about 46% and five folds for lesser solidity ratio case. From the measured strains of the shear connectors, full shear transfer between the concrete wythes is observed. The yielding occurred approximately at 4% and 0.55% of the ultimate deformation for 100 mm & 150 mm thick panels, which shows the large ductility characteristics of the panels. From the study, it is inferred that the light weight sandwich panels behave structurally in a very similar manner to reinforced concrete panels. Further from the numerical study, it is observed that the numerical values obtained by FE analysis are in good agreement with the experimental observations.

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

사질토의 전단 하중 재하 시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수 (Anisotropic Elastic Shear Moduli of Sands Measured by Multi-directional Bender Element Tests in Stress Probe Experiments)

  • 고영주;정영훈;이충현;정충기
    • 대한토목학회논문집
    • /
    • 제28권3C호
    • /
    • pp.159-166
    • /
    • 2008
  • 흙은 변형률에 따라 강성이 감소하는 비선형적 변형 특성을 가지지만, 매우 작은 변형률 영역($<10^{-3}%$)에서는 선형탄성적 특성을 갖는다고 알려져 있다. 본 연구에서는 응력 경로 시험 중 실시한 다축 벤더엘리먼트 시험을 통해 다양한 응력 상태에서 사질토의 이방적 전단탄성계수를 측정하고, 그 변화를 분석하고자 하였다. 응력 경로 시험에서는 내부 변형률 측정 장치 및 3 방향의 벤더 엘리먼트가 부착된 삼축 시험기를 이용하였다. 전단 중 응력비가 -0.5~1.5의 범위를 벗어나게 되면 축 방향 전단탄성계수는 응력과의 경험적 상관관계와 차이가 발생하였고, 이로부터 시료의 항복이 전단파 전달 구조를 변화시킴을 알 수 있었다. 수평방향 전단탄성계수의 변화는 전단 중 체적 상태의 변화와 밀접한 관계가 있음을 알 수 있었다.