• Title/Summary/Keyword: shear wall ductility

Search Result 149, Processing Time 0.022 seconds

Behavior of Precast Concrete Shear Walls with C-Type Connections (C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.461-472
    • /
    • 2010
  • This paper investigates the behavior of precast concrete (PC) shear walls with a new vertical connections for a fast remodeling construction. The C-type vertical connections for the PC wall systems are proposed for transfer of bending moment between top and bottom walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing action. The proposed vertical connections allows easy fabrication thanks to slots at the edges of wall in opposite directions. The plane PC wall systems subject to lateral load are compared with ordinary wall systems by investigating the effects of connection on the stiffness, strength, ductility, and failure modes of whole systems. The load-displacement relationship and influence of premature failure of connections are examined. The experimental test showed that the longitudinal reinforcing steel bars placed at the edges of walls yielded first and the ultimate deformation were terminated due to premature failure of connections. The diagonal reinforcements for efficient shear transfer in the walls were not effective. The strength and deformation obtained through the section analysis were generally in agreement with the experimental data, and indicated that. Gap opening contributed to the deformation behavior more than any other factors.

Ductility Capacity of Shear-Dominated Steel Plate Walls (전단지배 강판벽의 연성능력)

  • Park, Hong Gun;Choi, In Rak;Jeon , Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.457-468
    • /
    • 2006
  • An experimental study was performed to investigate the maximum energy dissipation and the ductility capacity of shear-dominated steel plate walls with thin web plates. Three specimens of three-story plate walls with thin web plates were tested. The parameters for the test specimens were the aspect ratio of the web plate and the shear strength of the column. A concentrically braced frame and a moment-resisting frme were a also tested for comparison. The steel plate walls exhibited much better ductility and energy dissipation capacity than the concentrically braced frame and the moment-resisting frame. The results showed that unlike other structural systems, the sh as well as strength, and can therefore be used as an effective earthquake-resisting system. A method of predicting the energy dissipation capacity of a steel plate wall was proposed.

Verification of Reinforcing Arrangement Error in Precast Concrete Shear Walls Using BIM and Presentation of Flexural Ductility Model (BIM을 이용한 프리캐스트 콘크리트 전단벽의 배근 오류 검증 및 휨 연성 모델 제시)

  • Ju-Hyun Mun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.27-36
    • /
    • 2024
  • This study established a BIM procedure considering manufacturing errors in the production process, and evaluated the flexural ductility of precast all-lightweight aggregate concrete special shear walls (PLASWs) with spliced sleeve technique. In the production process, the concrete cover thickness of PALSW was on average 1.28 times greater than the cross-sectional details of the specimen modeled with Revit BIM program. In particular, the bending inner radius of the hoop and inner-cross tie were greater than the designed details. Consequently, the confinement effect of core concrete reduced from 64% to 54% due to the manufacturing errors in the transverse reinforcing bars, resulting in a decrease in the ductility of PALSW by approximately 4.91%. Considering these findings, the BIM of PLASW with spliced sleeve technique should compliment the bending inner radius of the transverse reinforcing bars, and the defined brittleness increase coefficient reflecting the decreased core concrete confining pressure in the stress-strain relationship of confined concrete should be evaluated as 1.8.

Evaluation of Response Modification Factors for Shear Wall Apartment Building (벽식 APT의 반응수정계수 추정에 관한 연구)

  • 송정원;송진규;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.859-864
    • /
    • 2001
  • For earthquake resistance design, a response modification factor is used to reduce the design strength and it reflects ductility, reserve strength, redundancy and damping effect. But this factor has not theoretical basis. In this study, two response modification factors are compared and analyzed for shear wall apartment building.; the one is introduced by ATC-19 Procedures, the other is suggested FEMA-273 and ATC-40 through nonlinear static analysis. For the results, ATC-19 procedure gives a reasonable estimation to R factor. But $R_{u}$ by using FEAM-273 and ATC-40 methods is estimated so small in case of a minor or moderate earthquake region. Due to this fact, response modification factor is smaller than suggested load criterion 3.0. So, it needs to decrease wall volume and reduce the global strength and system stiffness for proper ductile behavior matching to domestic load criterion.

  • PDF

Experimental study on cyclic behavior of reinforced concrete parallel redundancy walls

  • Lua, Yiqiu;Huang, Liang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1177-1191
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are one of the most commonly used lateral-load resisting systems in high-rise buildings. RC Parallel redundancy walls studied herein consist of two parts nested to each other. These two parts have different mechanical behaviors and energy dissipation mechanisms. In this paper, experimental studies of four 1/2-scale specimens representing this concept, which are subjected to in-plane cyclic loading, are presented and test results are discussed. Two specimens consist of a wall frame with barbell-shaped walls embedded in it, and the other two consist of a wall frame and braced walls nested each other. The research mainly focuses on the failure mechanism, strength, hysteresis loop, energy dissipation capacity and stiffness of these walls. Results show that the RC parallel redundancy wall is an efficient lateral load resisting component that acts as a "dual" system with good ductility and energy dissipation capacity. One main part absorbs a greater degree of the energy exerted by an earthquake and fails first, whereas the other part can still behave as an independent role in bearing loads after earthquakes.

Retrofitting Device to Increase Seismic Resistant Capactiy of Shear Walls (전단벽의 내진보강을 위한 방법에 관한 연구)

  • Hong, Sung-Gul;Lee, Ji-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • The elastic buckling load or strength of a concentrically loaded slender metal column may be increased many times by reinforcing it with an assemblage of pretensioned stays and rigidity connected crossarm members. The complete system is herein referred to as a 'stayed column'. The purpose of the pretensioned stays and crossarm members is to introduce, at several points along the length of the column, restraint against translation and rotation and thereby decrease the effective unsupported buckling length of the column. This paper verifies that pretensioned cable of stayed column is effective for cyclic load and increases strength of shear wall against earthquake by reinforcing side of wall. Design process of stayed column which satisfies demanded capacity and ductility of wall is presented by analyzing result of experiment.

  • PDF

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Numerical investigation of buckling-restrained steel plate shear wall under fire loading

  • Masoumi-Zahaneh, Fereydoon;Hoseinzadeh, Mohamad;Rahimi, Sepideh;Ebadi-Jamkhaneh, Mehdi
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2022
  • In this study, the seismic behavior of an all-steel buckling-restrained (AB) steel plate shear wall (SPSW) with incline slits under fire and cyclic loading was investigated. ABSPSW was composed of two thin steel infill plates with a narrow distance from each other, which were embedded with incline slits on each plate. These slits were in opposite directions to each other. The finite element (FE) numerical model was validated with three test specimens and after ensuring the modeling strategy, the parametric study was performed by considering variables such as wall plate thickness, slit width, strip width between two slits, and degree of temperature. A total of 256 FE numerical models were subjected to coupled temperature-displacement analysis. The results of the analysis showed that the high temperature reduced the seismic performance of the ABSPSW so that at 917℃, the load-bearing capacity was reduced by 92%. In addition, with the increase in the temperature, the yield point of the infill plate and frame occurred in a small displacement. The average decrease in shear strength at 458℃, 642℃, and 917℃ was 18%, 46%, and 92%, respectively, compared to the shear strength at 20℃. Also, with increasing the temperature to 917℃, ductility increased by an average of 75%

Effects of openings geometry and relative area on seismic performance of steel shear walls

  • Massumi, Ali;Karimi, Nasibeh;Ahmadi, Mostafa
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.617-628
    • /
    • 2018
  • Steel shear wall possesses priority over many of the current lateral load-bearing systems due to reasons like higher elastic stiffness, desirable ductility and energy absorption, convenience in construction and implementation technology, and economic criteria. Besides these advantages, this system causes increase in the dimensions of other structural elements due to its high stiffness as one of its intrinsic characteristics. One of the methods for stiffness reduction is perforating the wall panel and creating openings in the wall that can also be used as windows or ducts in buildings service period. The aim of the present study is probing the appropriate geometric shape and location of opening to fulfil economic criterion plus technical and seismic design criteria. In the present research, a number of possible while reasonable opening shapes and locations are defined in various sizes for some steel shear wall specimens. The specimens are modelled in ABAQUS finite elements software and analyzed using nonlinear pushover analysis. Finally, the analyses' results are reported as force-displacement diagrams and the strength, the initial stiffness and the energy absorption are calculated for all specimens and compared together. The obtained results show that both shape and location of the openings affect the seismic parameters of the shear wall. The specimens in which the openings are further from the center and closer to the columns possess higher stiffness and strength while the specimens in which the openings are closer to the center show more considerable changes in their seismic parameters in response to increase in opening area.

The Structural Behavior of Reinforced Concrete R/C Couplinging Beams in Wall-Dominant System (벽식구조 아파트에서 전단벽 연결보의 구조적거동)

  • 장극관;천영수;서대원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.411-416
    • /
    • 2001
  • Preliminary experimental results are reported on the response of reversed T type linking reinforced concrete shear wall. Different layouts of coupling beams were tested and stiffness degradation and energy dissipation of coupling beams were evaluated. Diagonally reinforced coupling beams with slab showed larger ductility and larger amount of energy absorption to be attained compared with conventionally reinforced concrete coupled beams.

  • PDF