• Title/Summary/Keyword: shear wall ductility

Search Result 149, Processing Time 0.025 seconds

The Limiting Drift and Energy Dissipation Ratio for Shear Walls Based on Structural Testing (전단벽의 최소 층변위 및 에너지 소산성능)

  • ;;N.M.Hawins
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.335-343
    • /
    • 1998
  • Recently, new experimental criteria for reinforced concrete frame structures in high seismic regions have been reported in United States. The objective of the criteria is to get more reliable test data which are valid to compare with other test data done by different researchers. The criteria precribe test method of specimens, analysis method of test data, and limiting values needed to specimens like drift angle, energey dissipation ratio, stiffness, and strength. These criteria might be usefel to get objective conclusion. Shear wall structures, which belong to one of earthquake resisting systems, also need this kind of criteria. But, the general response of shear wall structures is a little bit different from that of frame structures since shear wall restrains the horizontal displacement caused by horizontal force and increases the stiffness and strength. The objective of this paper is to propose a criterion for limiting drift and energy dissipation ratio of shear walls based on structural testing. These are the most important values for presenting the capacity of shear walls. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to the results for a suggested acceptance criteria that involve a limiting drift that is a function of aspect ratio and a limiting energy dissipation ratio that is a function of displacement ductility and damping.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections

  • Vatansever, Cuneyt;Yardimci, Nesrin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.251-271
    • /
    • 2011
  • To make direct comparisons regarding the cyclic behavior of thin steel plate shear walls (TSPSWs) with different infill-to-boundary frame connections, two TSPSWs were tested under quasi-static conditions, one having the infill plate attached to the boundary frame members on all edges and the other having the infill plate connected only to the beams. Also, the bare frame that was used in the TSPSW specimens was tested to provide data for the calibration of numerical models. The connection of infill plates to surrounding frames was achieved through the use of self-drilling screws to fish plates that were welded to the frame members. The behavior of TSPSW specimens are compared and discussed with emphasis on the characteristics important in seismic response, including the initial stiffness, ultimate strength and deformation modes observed during the tests. It is shown that TSPSW specimens achieve significant ductility and energy dissipation while the ultimate failure mode resulted from infill plate fracture at the net section of the infill plate-to-boundary frame connection after substantial infill plate yielding. Experimental results are compared to monotonic pushover predictions from computer analysis using strip models and the models are found to be capable of approximating the monotonic behavior of the TSPSW specimens.

Fragility assessment of shear walls coupled with buckling restrained braces subjected to near-field earthquakes

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.389-402
    • /
    • 2019
  • Reinforced concrete walls and buckling restrained braces are effective structural elements that are used to resist seismic loads. In this paper, the behavior of the reinforced concrete walls coupled with buckling restrained braces is investigated. In such a system, there is not any conventional reinforced concrete coupling beam. The coupling action is provided only by buckling restrained braces that dissipate energy and also cause coupling forces in the wall piers. The studied structures are 10-, 20- and 30-story ones designed according to the ASCE, ACI-318 and AISC codes. Wall nonlinear model is then prepared using the fiber elements in PERFORM-3D software. The responses of the systems subjected to the forward directivity near-fault (NF) and ordinary far-fault (FF) ground motions at maximum considered earthquake (MCE) level are studied. The seismic responses of the structures corresponding to the inter-story drift demand, curvature ductility of wall piers, and coupling ratio of the walls are compared. On average, the results show that the inter-story drift ratio for the examined systems subjected to the far-fault events at MCE level is less than allowable value of 3%. Besides, incremental dynamic analysis is used to examine the considered systems. Results of studied systems show that, the taller the structures, the higher the probability of their collapse. Also, for a certain peak ground acceleration of 1 g, the probability of collapse under NF records is more than twice this probability under FF records.

Ductility-based seismic design of precast concrete large panel buildings

  • Astarlioglu, Serdar;Memari, Ali M.;Scanlon, Andrew
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.405-426
    • /
    • 2000
  • Two approximate methods based on mechanism analysis suitable for seismic assessment/design of structural concrete are reviewed. The methods involve use of equal energy concept or equal displacement concept along with appropriate patterns of inelastic deformations to relate structure's maximum lateral displacement to member and plastic deformations. One of these methods (Clough's method), defined here as a ductility-based approach, is examined in detail and a modification for its improvement is suggested. The modification is based on estimation of maximum inelastic displacement using inelastic design response spectra (IDRS) as an alternative to using equal energy concept. The IDRS for demand displacement ductilities are developed for a single degree of freedom model subjected to several accelerograms as functions of response modification factor (R), damping ratios, and strain hardening. The suggested revised methodology involves estimation of R as the ratio of elastic strength demand to code level demand, and determination of design base shear using $R_{design}{\leq}R$ and maximum displacement, determination of plastic displacement using IDRS and subsequent local plastic deformations. The methodology is demonstrated for the case of a 10-story precast wall panel building.

Evaluation of Structural Behavior of SC Walls in Nuclear Power Plant with Openings (개구부를 갖는 원전 SC구조 벽체의 구조거동 평가)

  • Chung, Chul-Hun;Lee, Han-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.277-287
    • /
    • 2012
  • The shear wall with openings built with reinforced concrete (RC) have been elaborately studied by many researchers, whereas the steel plate concrete (SC) wall structure has not been investigated as much. The recent SC wall structures developed in Korea have been partly applied to nuclear power plant structures, although its design specification or guideline for the SC wall structure with openings has not been completed yet. This study based on numerical analysis evaluates the effects of opening on the structural resistance of the SC structure in nuclear power plant. As a result from nonlinear analysis, since the strengthening for openings significantly affect the overall strength of SC wall, the openings should be considered to strengthen them around adjacent area. It is also proved that the strengthened openings have the sufficient resistance and ductility regardless their size, shape, location, and quantity.

Experimental Research on Structural Behaviour of the Wing Wall Attached Columns (날개벽이 붙는 기둥의 구조적 거동에 관한 실험적 연구)

  • Kang, Young-Ung;Yang, Won-Gik;Kang, Dae-Eon;Song, Dong-Yup;Yi, Waon-Ho;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.29-32
    • /
    • 2008
  • A lot of structures built since 1988 do not have efficient seismic design. Current buildings have complex shaped walls where the wing wall system is a popular option. When the wing wall is attached to a column, or a short span is produced due to the wing wall system, the system affects the behaviour of the column such as by increasing the strength and decreasing the ductility of the members. These members affect the structural behaviour of the columns and destruction aspect as the investigation on the damage of the previous earthquakes indicates. To prevent such case, current design installs structural silt on the wing wall to consider the columns and insulating so that it does not affect the internal forces. Calculations for internal shear force and internal bending moment of the vertical members are considered an important matter in design, but currently Korea does not have any studies on the effects of the wing wall on the columns.

  • PDF

Comparison analyzation of Calculation Equations for Shear strength of Steel Plate Coupling Beam (철골 플레이트 커플링보의 전단강도에 대한 기준식의 비교.분석)

  • Lee, Kyung-Hwun;Song, Han-Beom;Park, Jin-Young;Yi, Waon-Ho;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.129-132
    • /
    • 2008
  • Coupled shear wall system is the primary seismic load resisting system of buildings. The coupling beam of these buildings must exhibit excellent ductility and energy dissipation capacity. To achieve better ductility and energy dissipation, the steel coupling beam embedded in the reinforced concrete walls is proposed. Performance of the steel coupling beam is mainly effected by embedment length. ACI equation and BS equation were examined with 23 previous test results. The statistical study uses the values of mean value, standard deviation, correlation coefficient, normal distribution curve, and error analysis. Through the analytical program, the evaluation of the 2 equations was established.

  • PDF

Cyclic load experiment study on the laminated composite RC walls with different concrete ages

  • Zhang, Hongmei;Lua, Xilin;Li, Jianbao;Liang, Lin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.745-758
    • /
    • 2010
  • 12 typical laminated composite reinforced concrete (RC) walls with different concrete ages and 3 cast-in-place RC walls subjected to low frequency cyclic load were carried out in this study. The failure mode, force-deformation response and energy dissipation capacity of these specimens were investigated. Differences of structural behaviours between composite RC walls and common cast-in-place RC walls were emphasized in the analysis. The compatibility of the composite specimens with different concrete ages was discussed based on the experiment. Test results indicated that the differences between the lateral bearing capacity and the displacement ductility of the composite walls and the common walls were not so obvious. Some of the composite specimen even has higher bearing capacity under the experiment loading situation. Besides, the two parts of the laminated composite specimens demonstrates incompatibility at the later loading sequence on failure mode and strain response when it is in tension. Finally, this laminated composite shear walls are suggested to be applied in rapid reconstruction structures which is not very high.