• 제목/요약/키워드: shear studs cluster

검색결과 2건 처리시간 0.015초

Mechanical behavior of prefabricated steel-concrete composite beams considering the clustering degree of studs

  • Gao, Yanmei;Fan, Liang;Yang, Weipeng;Shi, Lu;Zhou, Dan;Wang, Ming
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.425-436
    • /
    • 2022
  • The mechanical behaviors of the prefabricated steel-concrete composite beams are usually affected by the strength and the number of shear studs. Furthermore, the discrete degree of the arrangement for shear stud clusters, being defined as the clustering degree of shear stud λ in this paper, is an important factor for the mechanical properties of composite beams, even if the shear connection degree is unchanged. This paper uses an experimental and calculation method to investigate the influence of λ on the mechanical behavior of the composite beam. Five specimens (with different λ but having the same shear connection degree) of prefabricated composite beams are designed to study the ultimate supporting capacity, deformation, slip and shearing stiffness of composite beams. Experimental results are compared with the conventional slip calculation method (based on the influence of λ) of prefabricated composite beams. The results showed that the stiffness in the elastoplastic stage is reduced when λ is greater than 0.333, while the supporting capacity of beams has little affected by the change in λ. The slip distribution along the beam length tends to be zig-zagged due to the clustering of studs, and the slip difference increases with the increase of λ.

Computational simulations of transitional flows around turbulence stimulators at low speeds

  • Lee, Sang Bong;Seok, Woochan;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.236-245
    • /
    • 2021
  • In this study, direct numerical and large eddy simulations of transitional flows around studs were conducted to investigate the effectiveness of turbulence stimulators at very low speeds for the minimum propulsion power condition of four knots. For simplicity, the studs were assumed to be installed on a flat plate, while the wake was observed up to 0.23 m downstream behind the second stud. For applicability to a model ship, we also studied the flow characteristics behind the first and second studs installed on a curved plate, which was designed to describe the geometry of a bulbous bow. A laminar-to-turbulent transition was observed in the wake at ReD ≥ 921 (U≥0.290 m/s), and the wall shear stress at ReD = 1162 (U = 0.366 m/s) in the second wake was similar to that of the fully developed turbulent boundary layer after a laminar-to-turbulent transition in the first wake. At ReD = 581 (U = 0.183 m/s), no turbulence was stimulated in the wake behind the first and second studs on the flat plate, while a cluster of vortical structures was observed in the first wake over the curved plate. However, a cluster of vortical structures was revealed to be generated by the reattachment process of the separated shear layer, which was disturbed by the first stud rather than directly initiated by the first stud. It was quite different from a typical process of transition, which was observed at relatively high ReD that the spanwise scope of the turbulent vortical structures expanded gradually as it went downstream.