• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.038 seconds

A Study on the Belt width and Separation of Tire using FEM (FEM을 이용한 Belt Width와 Separation에 관한 연구)

  • Kim S.R.;Sung K.D.;Kim S.S.;Cho C.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.2006-2010
    • /
    • 2005
  • This study is concerned with the relation between steelbelt and belt edge separation. Belt edge separation causes tire burst and threatens passenger's safety. For that reason, it is important to predict durability caused by belt edge separation first in tire structure design step. In this study, to predict belt edge separation, we suggest the prediction method of belt edge separation and evaluate the effect of steelbelt width on the belt edge separation using FEM. We study on analysis parameter also to do exact estimation about the shear behaviour of belt edge area.

  • PDF

Design, Fabrication and Test of Smart Skin Sandwich Specimen (스마트 스킨 샌드위치 시편의 설계, 제작 및 시험 평가)

  • 김용범;김영성;박훈철;윤광준;이재화
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2002
  • Smart skin, a multi-layer structure of composed or different materials, was designed and fabricated. Tests and analyses are conducted to study the characteristics of its behavior under compression and bending loads. The designed smart skin failed due to premature buckling before compression failure. It was confirmed that shear moduli of honeycomb core affect structural stability of smart skin. A new test method and device were designed fur better measurement of shear moduli of honeycomb core. Numerical prediction of structural behavior of smart skin by NASTRAN agreed well with experimental data.

Characteristics of Vertical Vibration Transfer according to RC Structure Systems (RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교)

  • Chun, Ho-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF

Fatigue Life Evaluation of Spot Welding Including Loading Speed Effect (점용접부에서 하중속도효과를 고려한 피로수명평가)

  • ;;;;A. Shimamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2003
  • Evaluation of fatigue strength on the spot welded part is very important for strength design of spot welded steel structures. In this paper, we could get the life cycle of the spot welded part using the lethargy coefficient obtained through the quasi-static tensile shear test for the specimen welded by current 10kA. The reliability evaluation of the life cycle is completed by comparing the life cycle calculated under the constant loading rate with the life cycle obtained by dynamic fatigue test. And then the result calculated by the lethargy coefficient is verified through the lift cycle calculated using the dynamic final tensile stress formula under the increased loading speed. This way can make save the time and cost in processing of predicting the life cycle of a structure.

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

Rheological Properties According to the Pigment Concentration of Ink (안료 함량에 따른 잉크의 레올로지 성질의 변화)

  • Park, Jeung-Min;Kim, Sung-Bin;Cho, Jin-Woo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 2003
  • Printing inks are mainly composed of pigment and vehicles. Among these components, the Vehicle affect the rheologic property of the ink the most but pigment content or characteristic also affect to the fluidity property not less than the vehicle. In the study, with the same vehicle on each sample, by making the sample to increase pigment content gradually. It can be examined the influence of the pigment to the fluidity of ink. In result we found that the viscosity value of the low shear rate rang has relatively higher value with increasing the pigment content in the ink. According to higher pigment content, yield stress and thixotropy index increases gradually. Structure recovery of the ink is that, the higher pigment content's ink, the less changing shear rate, and it takes less time to recover.

  • PDF

Efficient membrane element for cyclic response of RC panels

  • Tesser, Lepoldo;Talledo, Diego A.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.351-360
    • /
    • 2017
  • This paper presents an efficient membrane finite element for the cyclic inelastic response analysis of RC structures under complex plane stress states including shear. The model strikes a balance between accuracy and numerical efficiency to meet the challenge of shear wall simulations in earthquake engineering practice. The concrete material model at the integration points of the finite element is based on damage plasticity with two damage parameters. All reinforcing bars with the same orientation are represented by an embedded orthotropic steel layer based on uniaxial stress-strain relation, so that the dowel and bond-slip effect of the reinforcing steel are presently neglected in the interest of computational efficiency. The model is validated with significant experimental results of the cyclic response of RC panels with uniform stress states.

Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory

  • Amoli, Abolfazl;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, nonlinear dynamic response of a concrete plate retrofit with Aluminium oxide ($Al_2O_3$) under seismic load and magnetic field is investigated. The plate is a composite reinforced by Aluminium oxide with characteristics of the equivalent composite being determined using Mori-Tanka model considering agglomeration effect. The plate is simulated with higher order shear deformation plate model. Employing nonlinear strains-displacements, stress-strain, the energy equations of column was obtained and using Hamilton's principal, the governing equations were derived. Differential quadrature method (DQM) in conjunction with Newark method is applied for obtaining the dynamic response of structure. The influences of magnetic field, volume percent of nanoparticles, geometrical parameters of column, agglomeration and boundary conditions on the dynamic response were investigated. Results showed that with increasing volume percent of nanoparticles, the dynamic deflection decreases.

A Study on the Characteristics of Circular Piezoelectric Transformner which has Multi-layered Crescent-Shaped Input Electrode (적층형 Crescent-Shaped Input Type 원형 압전변압기의 특성)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.223-224
    • /
    • 2006
  • This paper present a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. This transformer has multi-layered structure. The piezoelectric transformers operated m each transformer's resonance vibration mode. The electrodes and poling directions on commercialy available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor ($k_p,\;k_{15}$) becomes effective rather than the transverse mode coupling factor ($k_{31}$). The Resonance frequency is 65.22[kHz] and maximum voltage step-up ratio is 149. Multi-layered transformer has better efficiency and step-up ratio than the single-layered transformer.

  • PDF

Resistance Spot Weldability of Cold Rolled HT80 Grade Steel for Automobile Application (80kg/mm$_2$급 高張力 冷延鋼板의 熔接性)

  • 김기철;이기호;장래웅
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.52-59
    • /
    • 1992
  • Resistance spot weldability of cold rolled 80kg/mm$^{2}$ and 45kg/mm$^{2}$ grade high strength steel sheets for automobile structure was investigated focussing on the influences of welding parameters such as welding current and welding time on the weld strength and the nugget formation. The results of this study showed that the optimum ranges of welding current for the grade 80 and grade 45 were 5.0 cycle(250 m sec.) It was also shown that the tensile shear strength of the resistance spot weld was strongly influenced by both current and time applied in welding procedure, however, the tensile shear strength was mainly affected by welding time for the higher strength steel.

  • PDF