• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.034 seconds

An Experimental Study on Shear Behaviour of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보의 전단거동에 관한 실험적 연구)

  • 곽계환;고갑수;곽경헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.58-69
    • /
    • 1996
  • In recent years, the research and development about the new material proceeds rapidly and actively. In building industry, high strength concrete is of interest as a new material. Since the building structure becomes bigger, higher and more specialized, the demand of material and member with high strength expands greatly. Therefore in this experiment, cement complex with high strength was made using the condensed silica fume, a basic experiment was performed on strength property, and optimum-mixture-state was determined for manufacturing a high-strength concrete. Shear behaviour and fracture property of concrete beams with high strength were evaluated. On the whole, in spite of many researches, it is one of the difficult problems that shear fracture of concrete beams has not yet been clearly understood theoretically, and now the shear-design-standard forms in many countries are a formula based on experiment. In this study, the variable of shear behavior experiment was shear-reinforcement-ratio. By analyzing test results and comparing with computation value by ACI code, the basic data was offered on shear design of reinforced concrete beams with high strength. The effect of epoxy repair was also investigated for the beams with cracks due to flexural and shear loading.

  • PDF

The effect of non-persistent joints on sliding direction of rock slopes

  • Sarfarazi, Vahab;Haeri, Hadi;Khaloo, Alireza
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.723-737
    • /
    • 2016
  • In this paper an approach was described for determination of direction of sliding block in rock slopes containing planar non-persistent open joints. For this study, several gypsum blocks containing planar non-persistent open joints with dimensions of $15{\times}15{\times}15cm$ were build. The rock bridges occupy 45, 90 and $135cm^2$ of total shear surface ($225cm^2$), and their configuration in shear plane were different. From each model, two similar blocks were prepared and were subjected to shearing under normal stresses of 3.33 and $7.77kg/cm^{-2}$. Based on the change in the configuration of rock-bridges, a factor called the Effective Joint Coefficient (EJC) was formulated, that is the ratio of the effective joint surface that is in front of the rock-bridge and the total shear surface. In general, the failure pattern is influenced by the EJC while shear strength is closely related to the failure pattern. It is observed that the propagation of wing tensile cracks or shear cracks depends on the EJC and the coalescence of wing cracks or shear cracks dominates the eventual failure pattern and determines the peak shear load of the rock specimens. So the EJC is a key factor to determine the sliding direction in rock slopes containing planar non-persistent open joints.

Shear lag effect in steel-concrete composite beam in hogging moment

  • Luo, Da;Zhang, Zhongwen;Li, Bing
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.27-41
    • /
    • 2019
  • Shear lag effect can be an important phenomenon to consider in design of the steel-concrete composite beams. Researchers have found that the effect can be strongly related with the moment distribution, the stiffness and the ductility of the composite beams. For continuous composite beams expected to sustain hogging moment, the shear lag effect can be more distinct as cracking of the concrete slab reduces its shear stiffness. Despite its influences on behaviour of the steel-concrete composite beams, a method for calculating the shear lag effect in steel-concrete composite beams sustaining hogging moment is still not available. Shear lag effect in steel-concrete composite beams sustaining hogging moment is investigated in this paper. A method was proposed specifically for predicting the effect in the cracked part of the steel-concrete composite beam. The method is validated against available experimental data. At last, FE studies are conducted for steel-concrete composite beams with different design parameters, loading conditions and boundary conditions to further investigate the shear lag effect and compare with the proposed method.

A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Longitudinal Reinforcement Ratio and Size Effect (철근콘크리트보의 인장철근비와 크기효과에 의한 전단강도 특성 연구)

  • Yu, In-Geun;Noh, Hyung-Jin;Lee, Ho-Kyung;Baek, Seung-Min;Kim, Woo-Suk;Kwak, Yoon-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.117-126
    • /
    • 2020
  • The main objective of this experimental study is to investigate shear strength of reinforced concrete beams according to longitudinal reinforcement ratio (ρ) and size effect. In order to find out the shear strength according to the tensile reinforcement ratio, in particular, the main variables are 100%, 75% and 50% of ρ=0.01 which is widely used in construction field. A total of twelve RC beams were tested under 4-point loading conditions. In addition to the existing proposal equations, the theoretical values such as KBC and ACI equations are compared with the experimental data. Through this analysis, this study is designed to provide more reasonable equations for shear design of reinforced concrete beams. When shear reinforcement bar spacing of nine specimens (R*-1, R*-2, and R*-3 series) fixed as d/s=2.0 and three specimens of R*-4 series fixed as d/s=1.5 are compared, the shear strength of two groups showed similar values. As a result, the current standard of d/s=2.0 for shear reinforcement bar spacing may be somewhat alleviated.

Shear Resistance of BESTOBEAM Shear Connector According to the Length (BESTOBEAM 전단연결재의 길이에 따른 전단 내력 평가)

  • Ahn, Hyung Joon;Jung, In Yong;Kim, Young Ju;Hwang, Jae Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.483-491
    • /
    • 2015
  • Shear resistance of BESTOBEAM, which has angle as shear connector and was developed with purpose of easy construction, was tested. With the test results shear resistance design equation was proposed. Unlike angle connector of Eurocode 4, BESTO BEMA shear connector behaves like fixed-end beam. Therefor longer span of the shear connector the lower shear resistance it has. As a result, shear resistance of BESTOBEAM shear connector according to its length tends to decrease as its length gets longer. The authors proposed design equation of angle shear connector sased on the test results. The results from the test and the proposed equation match within 10% error range. Therefore the proposed equation can be used for designing shear connector of BESTOBEAM.

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

Horizontal Shear Behavior of Precast Concrete Slab Track on Bridge (교량구간 프리캐스트 콘크리트 슬래브궤도의 수평전단 거동)

  • Jang, Seung-Yup;Na, Sung-Hoon;Kim, Yu-Bong;Ahn, Ki-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.998-1001
    • /
    • 2011
  • The concrete track on bridge should be designed to effectively cope with the behavior of the bridge superstructure. For this purpose, in general, shear keys are designed to be installed at a certain intervals on the bridge deck, and the track slab is cast on these shear keys to transfer the load induced by the relative displacement between track and bridge. In this study, to apply the precast concrete slab track on bridge, a shear key structure and its effective installation method are presented. Also, the structural behavior of this shear key has been evaluated by the laboratory mock-up test.

  • PDF

Shear Strength of Hybrid Steel Beam with Reinforced Concrete Ends (단부 RC조와 중앙부 철골조로 이루어진 혼합구조 보의 전단내력에 관한 실험적 연구)

  • 김욱종;최종권;문정호;이리형;이동렬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.457-462
    • /
    • 1998
  • An experimental study was carried out for hybrid steel beams with reinforced concrete ends. The purpose is to examine the shear strength and to develop the design methodology of the RC-S connection region. Tested were four beams which included a reference beam and three beams with various parameters. The reference beam was used to make a comparison with remaining specimens. The test parameters were focused mostly on the concentrated shear reinforcements. The ratio of concentrated shear reinforcements and their types were investigated in this study.

  • PDF

Study of Shear Fracture System of Janghung Area by Landslide Location Analysis (산사태 발생 자료 분석에 의한 장흥지역의 전단 단열계 연구)

  • 이사로;최위찬;민경덕
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.547-556
    • /
    • 2000
  • The purpose of this study is to analyze shear fracture system using landslide location occurred 1998 at Janghung area. For the geological implication, foliation was surveyed and analyzed, and location of landslide, geological structure and topography were constructed into spatial database using GIS. With the constructed spatial database, shear fracture system was assessed by the relation analysis between strike and dip of the foliation and aspect and slope of the topography. We compared strike and dip of foliation and aspect and slope of topography and recognized the typical fracture pattern, strike and dip of joint, that coincided with shear fracture system. The result tells us that foliation of gneiss has geometrical relation to joint or fault that leading landslide. GIS was used to analyze vast data efficiently and the result can be used to assess the landslide susceptibility as important factor.

  • PDF

Free vibration analysis of asymmetric shear wall-frame buildings using modified finite element-transfer matrix method

  • Bozdogan, Kanat B.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • In this study, the modified finite element- transfer matrix methods are proposed for free vibration analysis of asymmetric structures, the bearing system of which consists of shear wall-frames. In the study, a multi-storey structure is divided into as many elements as the number of storeys and storey masses are influenced as separated at alignments of storeys. The shear walls and frames are assumed to be flexural and shear cantilever beam structures. The storey stiffness matrix is obtained by formulating the governing equation at the center of mass for the shear walls and the frames in the i.th floor. The system transfer matrix is constructed in the dimension of $6{\times}6$ by transforming the obtained stiffness matrix. Thus, the dimension, which is $12n{\times}12n$ in classical finite elements, is reduced to the dimension of $6{\times}6$. To study the suitability of the method, the results are assessed by solving two examples taken from the literature.