• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.025 seconds

An efficient C1 beam element via multi-scale material adaptable shape function

  • El-Ashmawy, A.M.;Xu, Yuanming
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.351-368
    • /
    • 2022
  • Recently, promising structural technologies like multi-function, ultra-load bearing capacity and tailored structures have been put up for discussions. Finite Element (FE) modelling is probably the best-known option capable of treating these superior properties and multi-domain behavior structures. However, advanced materials such as Functionally Graded Material (FGM) and nanocomposites suffer from problems resulting from variable material properties, reinforcement aggregation and mesh generation. Motivated by these factors, this research proposes a unified shape function for FGM, nanocomposites, graded nanocomposites, in addition to traditional isotropic and orthotropic structural materials. It depends not only on element length but also on the beam's material properties and geometric characteristics. The systematic mathematical theory and FE formulations are based on the Timoshenko beam theory for beam structure. Furthermore, the introduced element achieves C1 degree of continuity. The model is proved to be convergent and free-off shear locking. Moreover, numerical results for static and free vibration analysis support the model accuracy and capabilities by validation with different references. The proposed technique overcomes the issue of continuous properties modelling of these promising materials without discarding older ones. Therefore, introduced benchmark improvements on the FE old concept could be extended to help the development of new software features to confront the rapid progress of structural materials.

Free vibrational behavior of perfect and imperfect multi-directional FG plates and curved structures

  • Pankaj S. Ghatage;P. Edwin Sudhagar;Vishesh R. Kar
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.367-383
    • /
    • 2023
  • The present paper examines the natural frequency responses of the bi-directional (nx-ny, ny-nz and nz-nx) and multidirectional (nx-ny-nz) functionally graded (FG) plate and curved structures with and without porosity. The even and uneven kind of porosity pattern are considered to observe the influence of porosity type and porosity index. The numerical findings have been obtained using a higher order shear deformation theory (HSDT) based isometric finite element (FE) approach generated in a MATLAB platform. According to the convergence and validation investigation, the proposed HSDT based FE model is adequate to predict free vibrational responses of multidirectional porous FG plates and curved structures. Further a parametric analysis is carried out by taking various design parameters into account. The free vibrational behavior of bidirectional (2D) and multidirectional (3D) perfect-imperfect FGM structure is examined against various power law index, support conditions, aspect, and thickness ratio, and for the curvature of curved structures. The results indicate that the maximum non-dimensional fundamental frequency (NFF) value is observed in perfect FGM plates and curved structures compared to porous FGM plates and curved structures and it is maximum for FGM plates and curved structures with uneven kind of porosity than even porosity.

Investigation of design methods in calculating the load-carrying capacity of mortise-tenon joint of timber structure

  • Hafshah Salamah;Seung Heon Lee;Thomas H.-K. Kang
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.307-323
    • /
    • 2023
  • This study compares two prominent design provisions, National Design Specification (NDS) and Eurocode 5, on load-carrying capacity calculations and failure analysis for mortise-tenon joints. Design procedures of double-shear connection from both provisions were used to calculate load-carrying capacity of mortise-tenon joints with eight different bolt sizes. From this calculation, the result was validated using finite element analysis and failure criteria models. Although both provisions share similar failure modes, their distinct calculation methods significantly influence the design load-carrying capacity values. Notably, Eurocode 5 predicts a 6% higher design load-carrying capacity for mortise-tenon joints with varying bolt diameters under horizontal loads and 14% higher under vertical loads compared to NDS. However, the results from failure criteria models indicate that NDS closely aligns with the actual load-carrying capacity. This indicates that Eurocode 5 presents a less conservative design and potentially requires fewer fasteners in the final timber connection design. This evaluation initiates the potential for the development of a wider range of timber connections, including mortise-tenon joints with wooden pegs.

Static and modal analysis of bio-inspired laminated composite shells using numerical simulation

  • Faisal Baakeel;Mohamed A. Eltaher;Muhammad Adnan Basha;Ammar Melibari;Alaa A. Abdelrhman
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.347-368
    • /
    • 2023
  • In the first part of this study, a numerical simulation model was developed using the mechanical APDL software to validate the results of the 3D-elastisity theory on the laminated sandwich plate developed by Panago. The numerical simulation model showed a good agreement to the results of Pagano's theory in terms of deflection, normal stresses, and shear stresses. In the second part of this study, the developed numerical simulation model was used to define different plates dimensions and fibers layup orientations to examine the load response in terms of deflection and stresses. Further analysis was implemented on the natural frequencies of laminated xxx plates of the plates. The layup configurations include Unidirectional (UD), Cross-Ply (CP), Quasi-Isotropic (QI), the linear bio-inspired known as Linear-Helicoidal (LH), and the nonlinear bio-inspired known as Fibonacci-Helicoidal (FH). The following numerical simulation model can be used for the design and study of novel, sophisticated bio-inspired composite structures in a variety of configurations subjected to sinusoidal or constant loads.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

Multi-objective optimization of anisogride composite lattice plate for free vibration, mass, buckling load, and post-buckling

  • F. Rashidi;A. Farrokhabadi;M. Karamooz Mahdiabadi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.89-107
    • /
    • 2024
  • This article focuses on the static and dynamic analysis and optimization of an anisogrid lattice plate subjected to axial compressive load with simply supported boundary conditions. The lattice plate includes diagonal and transverse ribs and is modeled as an orthotropic plate with effective stiffness properties. The study employs the first-order shear deformation theory and the Ritz method with a Legendre approximation function. In the realm of optimization, the Non-dominated Sorting Genetic Algorithm-II is utilized as an evolutionary multi-objective algorithm to optimize. The research findings are validated through finite element analysis. Notably, this study addresses the less-explored areas of optimizing the geometric parameters of the plate by maximizing the buckling load and natural frequency while minimizing mass. Furthermore, this study attempts to fill the gap related to the analysis of the post-buckling behavior of lattice plates, which has been conspicuously overlooked in previous research. This has been accomplished by conducting nonlinear analyses and scrutinizing post-buckling diagrams of this type of lattice structure. The efficacy of the continuous methods for analyzing the natural frequency, buckling, and post-buckling of these lattice plates demonstrates that while a degree of accuracy is compromised, it provides a significant amount of computational efficiency.

Investigation of seismic performance of a premodern RC building typology after November 26, 2019 earthquake

  • Marsed Leti;Huseyin Bilgin
    • Structural Engineering and Mechanics
    • /
    • v.89 no.5
    • /
    • pp.491-505
    • /
    • 2024
  • This study evaluates the seismic performance of a premodern six story reinforced concrete building typology designed during the communism period of Albania and build throughout the country. During the November 26, 2019 Earthquake in Albania, the most affected reinforced concrete buildings were among the old templates, lacking shear walls and inadequate reinforcement details which suffer from concrete aging. The mathematical model of the selected building is done in the environments of ZeusNL software, developed especially for earthquake engineering applications. The capacity curve of the structure is gained using the conventional static nonlinear analysis. On the other hand, the demand estimation is utilized using one of the recent methods known as Incremental Dynamic Analysis with a set of 18 ground motion records. The limit states in both curves are defined based on the modern guidelines. For the pushover, immediate occupancy (IO), life safety (LS) and collapse prevention (CP) are plotted in the same graph with capacity curve. Furthermore, on each IDA derived, the IO, CP and global instability (GI) are determined. Moreover, the IDA fractiles are generated as suggested by the literature, 16%, 50% (median) and 84%. In addition, the comparative assessment of the IDA median with capacity curve shows good correlation points. Lastly, this study shows the approach of determination of LS in IDA fractiles for further vulnerability assessment based on the local seismic hazard map with 95 and 475 return period.

Nonlinear thermal post-buckling behavior of graphene platelets reinforced metal foams conical shells

  • Yin-Ping Li;Lei-Lei Gan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.383-391
    • /
    • 2024
  • Conical shell is a common engineering structure, which is widely used in machinery, civil and construction fields. Most of them are usually exposed to external environments, temperature is an important factor affecting its performance. If the external temperature is too high, the deformation of the conical shell will occur, leading to a decrease in stability. Therefore, studying the thermal-post buckling behavior of conical shells is of great significance. This article takes graphene platelets reinforced metal foams (GPLRMF) conical shells as the research object, and uses high-order shear deformation theory (HSDT) to study the thermal post-buckling behaviors. Based on general variational principle, the governing equation of a GPLRMF conical shell is deduced, and discretized and solved by Galerkin method to obtain the critical buckling temperature and thermal post-buckling response of conical shells under various influencing factors. Finally, the effects of cone angles, GPLs distribution types, GPLs mass fraction, porosity distribution types and porosity coefficient on the thermal post-buckling behaviors of conical shells are analyzed in detail. The results show that the cone angle has a significant impact on the nonlinear thermal stability of the conical shells.

Development and Comparative Evaluation of Imitated Fiber from Different Protein Sources Using Wet-Spinning

  • Swati Kumari;So-Hee Kim;Chan-Jin Kim;Yong Sik Chung;Young-Hwa Hwang;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1156-1166
    • /
    • 2024
  • Texture is a major challenge in addressing the need to find sustainable meat alternatives, as consumers desire alternative meat to have a sensory profile like meat. In this study, the fabrication of imitated muscle fiber (IMF) is performed by introducing different kinds of protein sources, with an effective bottom-up technique- wet spinning. Herein, the protein sources (pea protein isolate, wheat protein, and myofibrillar paste) were combined with sodium alginate to stimulate the bonding with the coagulation solution for fabrication. It has been found that the fabrication of IMF is possible using all the protein sources, however, due to the difference in protein structure, a significant difference was observed in quality characteristics compared to conventional meat. Additionally, combination of wheat protein and pea protein isolate has given similar values as conventional meat in terms of some of the texture profiles and Warner-Bratzler shear force. In general, the optimization of protein sources for wet spinning can provides a novel way for the production of edible fiber of alternative meat.