• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.029 seconds

Nonlinear dynamic analysis of a RC bridge subjected to seismic loading

  • Nanclares, German;Ambrosini, Daniel;Curadelli, Oscar;Domizio, Martin
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.765-779
    • /
    • 2020
  • Collapse of bridges in recent earthquakes demonstrates the need to deepen the understanding of the behaviour of these structures against seismic actions. This paper presents a highly detailed numerical model of an actual bridge subjected to extreme seismic action which results in its collapse. Normally, nonlinear numerical models have high difficulties to achieve convergence when reinforced concrete is intended to be represented. The main objective of this work is to determine the efficiency of different passive control strategies to prevent the structural collapse of an existing bridge. Metallic dampers and seismic isolation by decoupling the mass were evaluated. The response is evaluated not only in terms of reduction of displacements, but also in increasing of shear force and axial force in key elements, which can be a negative characteristic of the systems studied. It can be concluded that the use of a metallic damper significantly reduces the horizontal displacements and ensures the integrity of the structure from extreme seismic actions. Moreover, the isolation of the deck, which in principle seems to be the most effective solution to protect existing bridges, proves inadequate for the case analysed due to its dynamic characteristics and its particular geometry and an unpredictable type of axial pounding in the columns. This unexpected effect on the isolation system would have been impossible to identify with simplified models.

Medium-range Orders in Amorphous Alloys and Their Role on the Plasticity: A Molecular Dynamics Viewpoint Study (비정질 합금의 중주기배열구조 및 이 구조가 소성에 미치는 역할: 분자동력학적 연구)

  • Lee, Chang-Myeon;Lee, Mirim;Lee, Kwang-Ryeol;Kang, Kyung-Han;Lee, Byeong-Joo;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.101-108
    • /
    • 2010
  • The local structural states of amorphous alloys have been depicted previously via short-range orders (SROs). However, the concept of SROs alone is inadequate and sometimes insufficient to explain the structure-property relation of the amorphous alloys. In this study, we propose new types of medium-range building structures that affect the mechanical properties, plasticity in particular. Using a combination of molecular dynamics simulations and the Voronoi tessellation method, we demonstrate a three-dimensional configuration of icosahedral medium-range orders (I-MROs) and elucidate how these icosahedral orders evolve by the application of shear deformation. It was observed that the structural stability of the icosahedral orders relies largely on how they are linked via percolation and this linking is explained in detail.

Mechanical and Electrical Properties of Cu-15wt.%Ag Microcomposites Processed by Equal Channel Angular Pressing (등통로각압축공정을 이용하여 제작된 Cu-15wt.%Ag 미세복합재료의 미세구조 및 기계적, 전기적 특성)

  • Cho, Kyu Jin;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.128-136
    • /
    • 2011
  • Equal channel angular pressing (ECAP) with intermediate heat treatment was employed to optimize the strength of Cu-15 wt.%Ag. Changes in microstructure, electrical properties and mechanical properties were studied as a function of pressing methods and heat treatment. ECAPed Cu-15wt.%Ag exhibited ultrafine-grained microstructures with the shape and distribution of Ag-rich lamellae dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the initial dendrites of Ag-rich phase were elongated along the shear direction and developed into elongated filaments. For route C in which the sample was rotated by 180 degree after each pass, the morphology of initial dendrites of Ag-rich phase was not much modified and the networked structure remained even after 8 passes of ECAP. For route Bc in which the sample was rotated by 90 degree after each pass, the initial dendrites became finer by fragmentation with no pronounced change of the shape and distribution of Ag-rich lamellae. The strength of Cu-15wt.%Ag ECAPed using route Bc was found to be greater than those ECAPed using route A, suggesting that the substructural strengthening is more effective in strengthening than the interface strengthening.

On bending analysis of perforated microbeams including the microstructure effects

  • Abdelrahman, Alaa A.;Abd-El-Mottaleb, Hanaa E.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.765-779
    • /
    • 2020
  • This article presents a nonclassical size dependent model based on the modified couple stress theory to study and analyze the bending behavior of perforated microbeams under different loading patterns. Modified equivalent material and geometrical parameters for perforated beam are presented. The modified couple stress theory with one material length scale parameter is adopted to incorporate the microstructure effect into the governing equations of perforated beam structure. The governing equilibrium equations of the perforated Timoshenko as well as the perforated Euler Bernoulli are developed based on the potential energy minimization principle. The Poisson's effect is included in the governing equilibrium equations. Regular square perforation configuration is considered. Based on Fourier series expansion, closed forms for the bending deflection and the rotational displacements are obtained for simply supported perforated microbeams. The proposed methodology is validated and compared with the available results in the literature and an excellent agreement is detected. Numerical results demonstrated the applicability of the proposed methodology to investigate the bending behavior of regularly squared perforated beams incorporating microstructure effect under different excitation patterns. The obtained results are significantly important for the design and production of perforated microbeam structures.

Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation

  • Kargar, Javad;Arani, Ali Ghorbanpour;Arshid, Ehsan;Rahaghi, Mohsen Irani
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.557-572
    • /
    • 2021
  • The current study considers free vibration of the spherical panel with magnetorheological (MR) fluids core and magneto-electro-elastic face sheets. The panel is subjected to electro-magnetic loads and also is located on an orthotropic visco-Pasternak elastic foundation. To describe the displacement components of the structure, the first-order shear deformation theory (FSDT) is used and the motion equations are extracted by employing Hamilton's principle. To solve the motion differential equations, Navier's method is selected as an exact analytical solution for simply supported boundary conditions. Effect of the most important parameters such as magnetic field intensity, loss factor, multi-physical loads, types of an elastic medium, geometrical properties of the panel, and also different material types for the face sheets on the results is considered and discussed in details. The outcomes of the present work may be used to design more efficient smart structures such as sensors and actuators.

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

Effect of Different Brine Injection Levels on the Drying Characteristics and Physicochemical Properties of Beef Jerky

  • Kim, Dong Hyun;Shin, Dong-Min;Lee, Jung Hoon;Kim, Yea Ji;Han, Sung Gu
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.98-110
    • /
    • 2022
  • Meat jerky is a type of meat snack with a long shelf life, light weight, and unique sensory properties. However, meat jerky requires a long manufacturing time, resulting in high energy consumption. In this study, beef jerky was prepared by injecting different concentrations of brine at different hot-air drying times (0-800 min). When the brine injection levels were increased to 30%, the drying characteristics of beef jerky, such as drying time and effective moisture diffusivity, were significantly improved owing to the relatively high water content and the formation of porous structures. The physicochemical properties (e.g. meat color, porosity, shear force, and volatile basic nitrogen) of the beef jerky injected with 30% brine were improved owing to the shortened drying time. Scanning electron microscopy images showed that the beef jerky structure became porous and irregular during the brine injection process. Our novel processing technique for manufacturing beef jerky leads to improved quality characteristics and shortened drying times.

Elastic stiffness of perfobond connections in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.221-241
    • /
    • 2022
  • Perfobond rib connectors are widely used in composite structures to achieve the composite action between the steel and the concrete, and empirical expressions for their strength and secant stiffness have been obtained by numerical simulations or push-out tests. Since perfobond connections are generally in an elastic state in the service process and the structural analysis are always based on the elastic properties of the members, the secant stiffness is not applicable for the normal structural analysis. However, the tangent stiffness of perfobond connections has not been introduced in previous studies. Moreover, the perfobond connections are bearing tension and shear force simultaneously when the composite beams subjected to torque or local loads, but the current studies fail to arrive at the elastic stiffness considering the combined effects. To resolve these discrepancies, this paper investigates the initial elastic stiffness of perfobond connections under combined forces. The calculation method for the elastic stiffness of perfobond connections is analyzed, and the contributions of the perfobond rib, the perforating rebar and the concrete dowel are investigated. A finite element method was verified with a high value of correlation for the test results. Afterwards, parametric studies are carried out using the reliable finite element analysis to explore the trends of several factors. Empirical equations for predicting the initial elastic stiffness of perfobond connections are proposed by the numerical regression of the data extracted by parametric studies. The equations agree well with finite element analysis and test results, which indicates that the proposed empirical equations reflect a high accuracy for predicting the initial elastic stiffness of perfobond connections.

Mechanical properties of reinforced-concrete rocking columns based on damage resistance

  • Zhu, Chunyang;Cui, Yanqing;Sun, Li;Du, Shiwei;Wang, Xinhui;Yu, Haochuan
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.737-747
    • /
    • 2021
  • The objective of seismic resilience is to maintain or rapidly restore the function of a building after an earthquake. An efficient tilt mechanism at the member level is crucial for the restoration of the main structure function; however, the damage resistance of the members should be the main focus. In this study, through a comparison with the classical Flamant theory of local loading in the elastic half-space, an elastomechanical solution for the axial-stress distribution of a reinforced-concrete (RC) rocking column was derived. Furthermore, assuming that the lateral displacement of the rocking column is determined by the contact surface rotation angle of the column end and bending and shear deformation of the column body, the load-lateral displacement mechanical model of the RC rocking column was established and validated through a comparison with finite-element simulation results. The axial-compression ratio and column-end strength were analyzed, and the results indicated that on the premise of column damage resistance, simply increasing the axial-compression ratio increases the lateral loading capacity of the column but is ineffective for improving the lateral-displacement capacity. The lateral loading and displacement of the column are significantly improved as the strength of the column end material increases. Therefore, it is feasible to improve the working performance of RC rocking columns via local reinforcement of the column end.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.