• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.024 seconds

A Study on the properties of flexural behavior according to reinforcing method of Composite Beams of different types of structure (이질 구조부 보강방법에 따른 혼합구조보의 휨거동 특성에 관한 연구)

  • Lim, Byung Ho;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.419-431
    • /
    • 2001
  • This study was to investigate structural behavior of composite structure beams composed of end-RC. center-Steel according to respective reinforcing method for connection zone composed of different materials (SRC) while attaching main bars on steel-flange by welding. The main reinforcing methods are as follows ; non-reinforcing, vertical shear reinforcing (type-stirrup), inclined reinforcing(type-x), horizontal reinforcing(type-web, 0.3L), double horizontal reinforcing (type-web, 0.3L), vertical reinforcing (type-flange, 0.3L). Consequently, It showed little difference in structural properties like ductility and strength according to the attaching method of main bars. For Maximizing the structural properties of composite beam, the most effective methods were vertical reinforcing one and double horizontal reinforcing one.

  • PDF

Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT (개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계)

  • Yun, Young Mook;Kang, Moon Myoung;Lee, Mal Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.21-32
    • /
    • 2004
  • In this study, a continuous optimum design model with its application program for plane steel frame structures developed. In the model, the sequential unconstrained minimization technique (SUMT) transforming the nonlinear optimization problem with multidesign variables and constraints into an unconstrained minimization problem and the refined plastic hinge analysis method as one of the most effective second-order inelastic analysis methods for steel frame structures were implemented. The total weight of a steel frame structure was taken as the objective function, and the AISC-LRFD code requirements for the local and member buckling, flexural strength, shear strength, axial strength and size of the cross-sectional shapes of members were used for the derivation of constraint equations. To verify the appropriateness of the present model, the optimum designs of serveral plane steel frame structures subject to vertical and horizontal loads were conducted.

Aero-elastic wind tunnel test of a high lighting pole

  • Luo, Yaozhi;Wang, Yucheng;Xie, Jiming;Yang, Chao;Zheng, Yanfeng
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.1-24
    • /
    • 2017
  • This paper presents a 1:25 multi-freedom aero-elastic model for a high lighting pole at the Zhoushan stadium. To validate the similarity characteristics of the model, a free vibration test was performed before the formal test. Beat phenomenon was found and eliminated by synthesis of vibration in the X and Y directions, and the damping ratio of the model was identified by the free decay method. The dynamic characteristics of the model were examined and compared with the real structure; the similarity results were favorable. From the test results, the major along-wind dynamic response was the first vibration component. The along-wind wind vibration coefficient was calculated by the China code and Eurocode. When the peak factor equaled 3.5, the coefficient calculated by the China code was close to the experimental result while Eurocode had a slight overestimation of the coefficient. The wind vibration coefficient during typhoon flow was analyzed, and a magnification factor was suggested in typhoon-prone areas. By analyzing the power spectrum of the dynamic cross-wind base shear force, it was found that a second-order vortex-excited resonance existed. The cross-wind response in the test was smaller than Eurocode estimation. The aerodynamic damping ratio was calculated by random decrement technique and the results showed that aerodynamic damping ratios were mostly positive at the design wind speed, which means that the wind-induced galloping phenomenon is predicted not to occur at design wind speeds.

A Study on Hydraulic Modifications of Low-Pressure Membrane Inlet Structure with CFD and PIV Techniques (CFD와 PIV 기법을 이용한 저압막 유입부 수리구조 개선에 관한 연구)

  • Oh, Jeong Ik;Choi, Jong-Woong;Lim, Jae-Lim;Kim, Donggil;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.607-618
    • /
    • 2015
  • This study was conducted to suggest hydraulic modification for improving evenness of inlet flow distribution into side stream type low-pressure MF (microfiltration) module using CFD (computational fluid dynamics) simulation and PIV (particle image velocimetry) techniques. From the results of CFD simulation for various typed inlet structure, it was investigated that installing internal orifice baffle in inlet the distribution channel could improve the evenness of inlet flow distribution over about 40%. Also, from the results of PIV measurements which were carried out for verifying the CFD simulation, it was observed that the momentum of the water body coming from the opposite side of the inlet was relatively larger. This momentum would generate strong shear force in the near of inlet side wall. On the other hands, occurrence of dead zone and eddy flow was confirmed in the opposite side.

An Analytical Study on Semi-Rigid Connections of 20-Story Braced Steel Structures (20층 가새 철골구조물의 반강접 접합부에 관한 해석적 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.1-8
    • /
    • 2000
  • In this study, the effect of semi-rigid connections on the structural behavior of 20-story braced steel structure has been investigated utilizing the second-order elastic structural analysis program in which nonlinear behavior of beam-column connections and geometric nonlinearity have been considered. Global effects such as P-delta effect and sway at the top have been studied, as well as distribution of member force and combined stress in structural members as local effects. When the structure subjected to horizontal load and vertical load is equipped with lateral-load resisting system such as braces, replacement of shear connection with semi-rigid connection has not caused any problem in P-delta effect and top lateral displacement. Distribution of member forces resulted in reduction in member size for economic structural design.

  • PDF

Simplified Finite Element Model of an Anchor Bolt Inserted Through Concretes Considering Clamping Forces (체결력을 고려한 콘크리트 삽입 앵커볼트의 간편 유한요소 모델)

  • Noh, Myung Hyun;Lee, Sang Youl;Park, Kyu Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • In this study we proposed a simplified finite element model of anchor bolt system inserted through concrete structures considering clamping forces. The three different finite element types using LS-DYNA are applied for numerical efficiency of the anchor bolt modeling. Combined beam and solid elements are used to reflect the tension state at internal part of anchor bolt due to torques. The clamping forces due to torques are considered by introducing a compression for a nut plane modeled by beam elements. The numerical examples show good agreement with different element types. Parametric studies are focused on the various effects of different element types on the induced axial and shear forces of anchor bolts considering clamping forces.

Structural Behavior of Wall-Type Structure with the Application of Slip-Form System (슬립폼 공법으로 건설된 벽식 구조의 거동에 관한 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.157-168
    • /
    • 1995
  • The structural performance of Slip-Form system was examined to make use of many advantages of fast construction and high quality c0ncret.e. However, the separate cor~struction of wall and slabs may cause some weaknesses around the wall-slab connection region. Thus, the purpose of the study is to examine the structural performance of wall-type structure constructed by Slip-Form method and to develop an efficient connection system between wall and slabs. In order to investigate the system, 7 wall specimens and 8 wall-slab joint specimens were tested and the experimental results were compared with the design equations and theoretical analysis. A satisfactory performance was obtained from the wall specimen tests. However, wall-slab joint specimens with rebar connection materials I Ilalfen] were shown that. the strength of' wall should be checked during design porocess.

Tactility and Mechanical Properties of Marketing Towel (타월용 시판소재의 촉감과 역학적 특성)

  • Jung, Ha-Kyung;Kim, Sun-Kyung;Cho, Hyo-Sook;Kim, Joo-Yong
    • Journal of the Korean Home Economics Association
    • /
    • v.44 no.10
    • /
    • pp.57-66
    • /
    • 2006
  • The purpose of this study was to evaluate the relationship between the tactile sensation and mechanical properties of towel. Six kinds of towels with different surface structure and fiber composition were used for this study. To evaluate the tactility of towel, 36 adjectives were collected and then 11 adjectives were selected. The subjective evaluation was examined by one to one comparative method and by blind test for estimating the only the sense of touch of the towels. Kawabata's Evaluation system for fabrics was used to measure the mechanical properties which are tensile, bending, shear, compression, surface, weight, and thickness of six towels. The results are as follows; First, surface structure of the towels had an effect on estimation the sense of touch. Pile surface was evaluated thicker, compacter, more cushiony, and more elastic. Waffle surface was evaluated knottier and rougher, and microfiber suede surface was evaluated softer and denser. Second, the highest value of the mechanical properties measured were G, 2HG, B, and SMD of 100% cotton 100% pile, WC, T, and W of elban loop pile, WT, 2HB, and LC of 100% cotton cut pile, RT and MIU of microfiber suede, and RC of microfiber waffle. Third, the 11 adjectives were correlated with more than one mechanical property. 'Knotty' and 'rough' were correlated with MMD and SMD, 'soft' were correlated with B, 2HB, MMD, and SMD. 'Thick', 'heavy', 'compact', and 'elastic' were correlated with WC, T, and W, 'cushiony' was correlated with WC. 'Stiff' was correlated with B and 2HB, 'dry out' was correlated with RT, WC, MIU, and T. 'Dense' was correlated with RT and SMD.

Moment Resistance Performance of Each Joint for Post-Beam Frame Structure (기둥-보 뼈대구조를 위한 각부 접합부의 모멘트저항성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Japanese larch glulam was used as structural members to develop a modern engineered wood jointing system using traditional post and beam structure. For the connections comprised of traditional joining and drift-pins, structural members are processed at a pre-cut factory. As a basic study to examine and increase the whole shear performance of portal frame, pin withdrawal test and moment resistance tests were conducted on each connection. The post and beam members with specified connectors showed good bearing performance in the wood members' joining system, column-base and beam-end. Moment rigidity was a bit better in a joint with higher slenderness ratio of drift-pin, but moment resistance performances, yield moment and maximum moment, were excellent in smaller one.

Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping

  • Bahar, Arash;Salavati-Khoshghalb, Mohsen;Ejabati, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.359-371
    • /
    • 2018
  • Strong seismic events commonly cause large drift and deformation, and functionality failures in the superstructures. One way to prevent functionality failures is to design structures which are ductile and flexible through yielding when subjected to strong ground excitations. By developing forces that assist motion as "negative stiffness forces", yielding can be achieved. In this paper, we adopt the weakening and damping method to achieve a new approach to reduce all of the structural responses by further adjusting damping phase. A semi-active control system is adopted to perform the experiments. In this adaptation, negative stiffness forces through certain devices are used in weakening phase to reduce structural strength. Magneto-rheological (MR) dampers are then added to preserve stability of the structure. To adjust the voltage in MR dampers, an inverse model is employed in the control system to command MR dampers and generate the desired control forces, where a velocity control algorithm produces initial required control force. An extensive numerical study is conducted to evaluate proposed methodology by using the smart base-isolated benchmark building. Totally, nine control systems are examined to study proposed strategy. Based on the numerical results of seven earthquakes, the use of proposed strategy not only reduces base displacements, base accelerations and base shear but also leads to reduction of accelerations and inter story drifts of the superstructure. Numerical results shows that the usage of inverse model produces the desired regulated damping, thus improving the stability of the structure.