• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.036 seconds

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

APPLICATION OF ACIDIC PRIMER FOR ORTHODONTIC ADHESIVE SYSTEM (Acidic primer를 이용한 교정용 브라켓 접착의 전단결합강도)

  • Kim, Jin-Hee;Jin, Hun-Hee;Oh, Jang-Kyun
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.137-147
    • /
    • 2001
  • Acidic primer is the bonding agent which combines the conditioning and priming agent into the single solution and was originally developed for the dentin bonding system. It is less harmful to the tooth structure and more convenient to manipulate than the traditional etching procedure. The Purpose of this study is to evaluate the shear bond strength of various bonding materials when the enamel is treated with acidic primer for the bracket bonding procedure. Fifty recently extracted human premolars were randomly separated into five groups -Group I using Clearfil Liner Bond 2 adhesive system to the enamel treated with acidic primer, Group II using Transbond XT adhesive system to the enamel treated with acidic primer, Group III using panavia 21 adhesive system to the enamel treated with acidic primer, Group IV using Fuji-Ortho LC adhesive system to the enamel treated with acidic primer, Group V using Transbond XT adhesive system to the enamel treated with 37$\%$ phosphoric acid. The shear bond strength was measured with Instron universal testing machine after storing in $37^{\circ}C$ water bath for 48 hours. After debonding, the teeth and brackets were examined under scanning electron microscope (SEM) and assessed with the adhesive remnant index (ARI). The results were as follows : 1. There were no significant differences in shear bond strength between group III ($8.69{\pm}2.72MPa$), group IV (9.7 ± 3.16 MPa), and group V ($10.48{\pm}2.60MPa$) (p>0.05). 2. The shear bond strength of group III and group IV was significantly higher than that of group I ($1.09{\pm}0.53MPa$), and Group II ($2.70{\pm}1.46MPa$) (p<0.05). 3. The ARI of group IV ($2.1{\pm}1.1$) and group V ($2.9{\pm}0.3$) was significantly higher than that of group I ($0.2{\pm}0.4$), group II ($0.3{\pm}0.9$) and group III ($0.2{\pm}0.4$) (p<0.05). 4. There were no significant difference between the ARI of group IV and group V (p>0.05). This result suggests that the combination of acidic primer and some bonding adhesive can provide sufficient shear bond strength for clinical orthodontics.

  • PDF

Processing of Downhole S-wave Seismic Survey Data by Considering Direction of Polarization

  • Kim, Jin-Hoo;Park, Choon-B.
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.321-328
    • /
    • 2002
  • Difficulties encountered in downhole S-wave (shear wave) surveys include the precise determination of shear wave travel times and determination of geophone orientation relative to the direction of polarization caused by the seismic source. In this study an S-wave enhancing and a principal component analysis method were adopted as a tool for determination of S-wave arrivals and the direction of polarization from downhole S-wave survey data. An S-wave enhancing method can almost double the amplitudes of S-waves, and the angle between direction of polarization and a geophone axis can be obtained by a principal component analysis. Once the angle is obtained data recorded by two horizontal geophones are transformed to principal axes, yielding so called scores. The scores gathered along depth are all in-phase, consequently, the accuracy of S-wave arrival picking could be remarkably improved. Applying this processing method to the field data reveals that the test site consists of a layered ground earth structure.

  • PDF

Examination for Structural Safety of Floating Slab Design and Shear Connector (플로팅 슬래브 설계와 전단연결재의 구조안전성 검토)

  • Park, Sung-Jae;Ma, Chang-Nam;Lee, Jong-Ho;Lee, Du-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.374-374
    • /
    • 2011
  • Recently the construction of railway sections passing the central area of cities and stations under railway lines are increasing, and then it is urgently required to take the countermeasures against the railway vibration and the second-phase noise radiated from it. The most efficient countermeasure, out of technologies developed up to now, is the floating slab track which is the track system isolated from the sub-structure by springs. In other countries, the source technologies for anti-vibration design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the system design technology and technologies for key components are not yet developed, the foreign system are being introduced without any adjustment, and the key component, vibration isolator, depends on imports. In this study, based on the results of previous studies of the dust-control device installation using the slab and go through time after lifting impressive when stepped on power generated by the cross-section of the slab and shear connection re-examined the structural stability.

  • PDF

A Study on Out-of-Plane Flexural Behavior of the Structure with a Vertical Plane Connection between a Reinforced Concrete Wall and a Steel Plate Concrete Wall (철근 콘크리트 벽과 강판 콘크리트 벽이 수직으로 만나는 이질접합 구조물의 면외 휨 거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Hahm, Kyung Won;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • This paper describes the experimental study on the structural behavior of the vertical plane connection between a reinforced concrete wall and a steel plate concrete wall under out-of-plane flexural loads. The specimen was tested under a dynamic test with the use of cyclic loads. As a result of the test, ductile failure mode of vertical bars was shown under a push load and the failure load was more than that of the nominal strength of the specimen. However, the shear failure mode of the connection was confirmed in case of a pull test and thus demonstrates a need for a shear reinforcement.

Preparation of Cellulose Nanofibril/Regenerated Silk Fibroin Composite Fibers

  • Lee, Ji Hye;Bae, Chang Hyun;Park, Byung-Dae;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • Wet-spun silk fibers have attracted the attention of many researchers because of 1) the unique properties of silk as a biomaterial, including good biocompatibility and cyto-compatability and 2) the various methods available to control the structure and properties of the fiber. Cellulose nanofibrils (CNFs) have typically been used as a reinforcing material for natural and synthetic polymers. In this study, CNF-embedded silk fibroin (SF) nanocomposite fibers were prepared for the first time. The effects of CNF content on the rheology of the dope solution and the characteristics of wet-spun CNF/SF composite fibers were also examined. A 5% SF formic acid solution that contained no CNFs showed nearly Newtonian fluid behavior, with slight shear thinning. However, after the addition of 1% CNFs, the viscosity of the dope solution increased significantly, and apparent shear thinning was observed. The maximum draw ratio of the CNF/SF composite fibers decreased as the CNF content increased. Interestingly, the crystallinity index for the silk in the CNF/SF fibers was sequentially reduced as the CNF content was increased. This phenomenon may be due to the fact that the CNFs prevent ${\beta}$-sheet crystallization of the SF by elimination of formic acid from the dope solution during the coagulation process. The CNF/SF composite fibers displayed a relatively smooth surface with stripes, at low magnification (${\times}500$). However, a rugged nanoscale surface was observed at high magnification (${\times}10,000$), and the surface roughness increased with the CNF content.

The Experimental Study on Reinforced Slope with Geocomb (지오콤 비탈면 보호공법의 활용에 관한 실험적 연구)

  • Ahn, Won Sik;Kim, Chul Moon;Kim, Ug Ki;Kim, Young Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • Generally levee or revetment becomes weak by erosion (scour) due to saturation of ground with infiltration, flowing water. So when levee or revetment is constructed, slope reinforcement must be installed to prevent failure. In this study experimental test was performed for verifying shear resistance, horizontal permeability and rooting ability of Geocomb designed to address the shortcomings of 3-dimension Geocell. Geocomb is one of geosynthetics and the advanced system of geogrid. According to the results of shear test, internal friction angle of reinforced ground with Geocomb was increasing compared with existing material and horizontal permeability of ground with Geocomb was bigger than geocell, porous geocell reinforcing ground. Lastly rooting ability of geocomb is most excellent. These results determined for the inner surface of the cell is net structure.

Nonlinear Analysis of Reinforced Concrete Shells(II) (철근(鐵筋)콘크리트 쉘구조(構造)의 비선형(非線型) 해석(解析)(II))

  • Kim, Woon Hak;Shin, Hyun Mock;Shin, Hyun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.79-87
    • /
    • 1991
  • An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).

  • PDF