• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.028 seconds

Comparison of Performance Evaluation Methods Based on the Estimation of Nonlinear Seismic Responses for Multistory Building (건축구조물의 비선형 지진응답 산정을 위한 내진성능평가 방법의 비교)

  • 최원호;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.349-356
    • /
    • 2002
  • There has been an increasing trend toward the use of pushover analysis as a tool for evaluating the seismic resistant and safety of a building structure in the performance based earthquake engineering field. The ATC-40 document proposed a nonlinear static procedure based on the Capacity Spectrum Method to determine earthquake-induced demand given the structure pushover curve, which a curve representing base shear versus roof displacement. However, the procedure is conceptually simple, iterative and time consuming method and may sometimes lead to no solution or multiple solutions. A new improved method of seismic performance evaluation for moment frame building, which take into account the previously mentioned deficiencies of currently used elastic design procedures, is presented in this paper. The results of nonlinear static and nonlinear time history analysis of an example high-rise steel moment frame designed by the proposed method are presented and discussed.

  • PDF

Cracking Models in Finite Element Analysis of Reinforced Concrete Structure (철근콘크리트 구조물의 유한요소 해석을 위한 균열모델)

  • 최창근;정성훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.23-28
    • /
    • 1991
  • A simple, yet effective, material model of concrete is presented in this paper. Based on the orthotropic model in which the assumption of orthogonal principal strain axes is used, the incremental stress-strain relation of concrete is defined in the biaxial stress condition and the rotating crack model is adopted to represent realistically the change of the crack direction according to the different loading pad after cracking. Numerical results obtained from the finite element analysis are compared favourably with the available experimental data. By the parametric study, moreover, it was found that He most important factor in the structural behavior when the reinforced concrete structure is subjected to the dominent shear forces is the tension stiffening effect. The influences of the tension stiffening effect remarkably appears as the steel ratio decreases.

  • PDF

Mechanical Properties Evaluation of Composites for Electromagnetic Waves Absorption (전자기파 흡수용 복합재료의 기계적 강도평가)

  • 오정훈;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.105-108
    • /
    • 2002
  • Materials, matrices mixed with various kinds of conductive or magnetic powder, such as ferrite, have been used as the electromagnetic wave absorbing ones, so called RAM(radar absorbing material). The structure that does not only have electromagnetic waves absorbing property like RAM but also supports loads is called RAS(radar absorbing structure). One of the existing manufacturing process of RAS is to compound with conductive powders the glass fiber-reinforced composite with good permeability and the ability to support loads. The process, however, causes a number of problems, such as the degradation in the mechanical properties of the composite, especially, interlamina shear strength. In this study, mechanical properties of glass fabric/epoxy composite containing 7wt% carbon black powders were measured and compared with pure glass fabric/epoxy composites.

  • PDF

A Study on Compression Molding Process of Long Fiber Reinforced Plastic Composites -Effect of Needle Punching on Viscosity- (장섬유강화 플라스틱 복합재의 압축성형 공정에 관한 연구 -점도에 미치는 니들펀칭의 영향-)

  • 송기형;조선형;이용신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.184-187
    • /
    • 2002
  • Compression molding was specifically developed for replacement of metal components with composites. As the mechanical properties of the products are dependent on the separation and orientation, it is important to research the fiber mat structure and molding conditions. In this study, the effects of the fiber mat structure(NP: 5, 10, 25punches/$\textrm{cm}^2$) and the mold closure speed($\dot{\textrm{h}}$=0.1, 1, 10mm/min) on the viscosity of composites were discussed. The composites is treated as a Non-Newtonian power-law fluid. The parallel-plate plastometer is used and the viscosity is obtained from the relationship between the compression load and the thickness of the specimen.

  • PDF

Experimental Study On shear Capacity of P.C Vertical Joints (P.C 수직접합부의 전단내력에 대한 실험연구)

  • 김원종;김상식;지호청
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.362-367
    • /
    • 1994
  • In Precast Concrete Structure, safety of structure depends on strength of joint. Asa result, there exists a necessity to review the effects of elements consisting joints, since these elements are important factors for evalaution of joint strength. However, there elements are different for construction methods and may be changed even during construction. Obviously, the change of elements can cause the change of joint strength; yet, the effects of the variables are not clearly defined. The behavior of the joints are complicated and evaluated only through experiments. Consequently, the main objective of this paper is to review effects of components consisting Precast Joints, I order to keep higher joint strength than specified in the design code.

  • PDF

Stochastic optimum design criterion of added viscous dampers for buildings seismic protection

  • Marano, Giuseppe Carlo;Trentadue, Francesco;Greco, Rita
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.21-37
    • /
    • 2007
  • In this study a stochastic approach for linear viscous dampers design adopted for seismic protection of buildings is developed. Devices optimal placement into the main structure and their mechanical parameters are attained by means of a reliability-based optimum design criterion, in which an objective function (O.F.) is minimized, subject to a stochastic constraint. The seismic input is modelled by a non stationary modulated Kanai Tajimi filtered stochastic process. Building is represented by means of a plane shear type frame model. The selected criterion for the optimization searches the minimum of the O.F., here assumed to be the cost of the seismic protection, i.e., assumed proportional to the sum of added dampings of each device. The stochastic constraint limits a suitable approximated measure of the structure failure probability, here associated to the maximum interstorey drift crossing over a given threshold limit, related, according with modern Technical Codes, to the required damage control.

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Buckling analysis of embedded concrete columns armed with carbon nanotubes

  • Arani, Ali Jafarian;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.567-578
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli and Timoshenko beam theories. The characteristics of the equivalent composite being determined using mixture rule. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Performance of multi-storey structures with high damping rubber bearing base isolation systems

  • Karabork, Turan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.399-410
    • /
    • 2011
  • Base isolation, having quite simple contents, aims to protect the buildings from earthquake-induced damages by installing structural components having low horizontal stiffness between substructure and superstructure. In this study, an appropriate base isolation system for 2-D reinforced concrete frame is investigated. For different structural heights, the structural systems of 2, 3 and 4 bays are modeled by applying base isolation systems and results are compared with conventional structural systems. 1999 Marmara earthquake data is used for applying the model by time history method in SAP2000 package. Results of various parameters such as base shear force, structure drift ratio, structure period and superstructure acceleration are discussed for all models.

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.