• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.028 seconds

Shear Lag Phenomenon of Tube Structure with Core Wall in Relation to Nondimensional Structural Parameters (튜브-전단벽 구조의 무차원 구조변수에 따른 전단지연 현상)

  • 유은정;이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.325-332
    • /
    • 2003
  • The tube structures act like cantilevered box beams and effectively resist lateral loads. In result, they are adopted as a high-rise buildings system. However, the shear lag in tube system prevents the idealized tube behavior such as a cantilevered box beam. Therefore, the studies on shear lag phenomena are necessarily requested. The presented papers are almost studied on framed tube structures and tube in tube structures. However, the study on the shear lag in the tube structure with core wall is lack. Thus, in this paper, the shear lag of the structure is studied. The shear lag coefficient is defined to investigate shear lag phenomena. However, existing shear lag coefficients are not adequate for understanding them. Therefore, on this study, new shear lag coefficient is suggested. In addition, the shear lag in the tube structure with core wall is analyzed by changing the five structural parameters of stiffness factor in frame, stiffness factor in wall, stiffness ratio, the number of stories and the number of bays.

  • PDF

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.

Seismic behavior of SFRC shear wall with CFST columns

  • Gao, Dan-Ying;You, Pei-Bo;Zhang, Li-Juan;Yan, Huan-Huan
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.527-539
    • /
    • 2018
  • The use of reinforced concrete (RC) shear wall with concrete filled steel tube (CFST) columns and steel fiber reinforced concrete (SFRC) shear wall has aroused widespread attention in recent years. A new shear wall, named SFRC shear wall with CFST columns, is proposed in this paper, which makes use of CFST column and SFRC shear wall. Six SFRC shear wall with CFST columns specimens were tested under cyclic loading. The effects of test parameters including steel fiber volume fraction and concrete strength on the failure mode, strength, ductility, rigidity and dissipated energy of shear wall specimens were investigated. The results showed that all tested shear wall specimens exhibited a distinct shear failure mode. Steel fibers could effectively control the crack width and improve the distribution of cracks. The load carrying and energy dissipation capacities of specimens increased with the increase of steel fiber volume fraction and concrete strength, whilst the ductility of specimens increased with the increase of steel fiber volume fraction and the decrease of concrete strength.

Shear behavior of multi-hole perfobond connectors in steel-concrete structure

  • Xing, Wei;Lin, Xiao;Shiling, Pei
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.983-1001
    • /
    • 2015
  • This study focuses on the load carrying capacity and the force transfer mechanism of multi-hole perfobond shear connectors in steel-concrete composite structure. The behavior of multi-hole perfobond shear connector is more complicated than single-hole connector cases. 2 groups push-out tests were conducted. Based on the test results, behavior of the connection was analyzed and the failure mechanism was identified. Simplified iterative method and analytic solution were proposed based on force equilibrium for analyzing multi-hole perfobond shear connector performance. Finally, the sensitivity of design parameters of multi-hole perfobond shear connector was investigated. The results of this research showed that shear force distribution curve of multi-hole perfobond shear connector is near catenary. Shear forces distribution were determined by stiffness ratio of steel to concrete member, stiffness ratio of shear connector to steel member, and number of row. Efficiency coefficient was proposed to should be taking into account in different limit state.

Design Shear Force Reduction Factor of Upper Structure in Seismic Base-isolated System Considering Response Acceleration Decrement Effect (면진구조의 응답가속도 감소효과를 고려한 상부구조의 설계전단력 저감계수)

  • Chen, Hao;Oh, Sang-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.165-170
    • /
    • 2019
  • The structural damage caused by earthquake to the upper structure of seismic base-isolated system can be suppressed effectively because it is designed to concentrate the input energy on the seismic isolation floor. Further, the response acceleration of seismic base-isolated system can be greatly reduced compared to the seismic structure because of the long period, which means that the design shear force of the seismic base-isolated system can be reduced appropriately. However, when the design shear force is determined to be reduced, the design stiffness will decrease, and the response acceleration will increase oppositely. Therefore, for finding the extent to which the design shear force of the upper structure can be reduced, this paper considered the seismic base-isolated structure as the analytical model and proposed the design shear force reduction factor of the base-isolated structure through the dynamic response analysis, while considering the decrement effect of response acceleration. The research result shows that the response acceleration of the isolated the upper structure can be reduced by 50%~70% of the seismic structure under the same design conditions, and the design shear force can be reduced by up to 40%. By increasing the design stiffness over to 1.8 times of the original design value, the design shear force can be reduced to the same extent as the response acceleration can be reduced compared to the seismic structure.

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao;Wang, Zhe;Wang, Tao;Wang, Xiao-Ting
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.759-769
    • /
    • 2018
  • This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.

In-structure Response Evaluation of Shear Wall Structure via Shaking Table Tests (진동대 실험을 통한 전단벽 구조물의 층응답 특성 평가)

  • Jung, Jae-Wook;Ha, Jeong-Gon;Hahm, Daegi;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • After the manual shutdown of the Wolseong nuclear power plant due to an earthquake in Gyeongju in 2016, anxiety about the earthquake safety of nuclear power plants has become a major social issue. The shear wall structure used as a major structural element in nuclear power plants is widely used as a major structural member because of its high resistance to horizontal loads such as earthquakes. However, due to the complexity of the structure, it is challenging to predict the dynamic characteristics of the structure. In this study, a three-story shear wall structure is fabricated, and the in-structure response characteristics of the shear wall structure are evaluated through shaking table tests. The test is performed using the Gyeongju earthquake that occurred in 2016, and the response characteristics due to the domestic earthquake are evaluated.

Effect of Fabirc Structure on the Mechanical Properties of Shingosen Fabric (직물구조가 신합섬 직물의 역학적 특성에 미치는 영향 (I) 직물밀도 및 감량가공이 전단특성에 미치는 영향)

  • 서문호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1994.10a
    • /
    • pp.11-11
    • /
    • 1994
  • A new theoretical fabric shear model has been presented and a quantitative study has been conducted on the shear properties of polyethylene(terephthalate)(PET) fabrics of four different fabric densities and five different weight reduction. The fabric shear properties were measured with KES-F handle measurement system. From the theoretical and experimental studies, following results can be summarized : 1) The fabric shear behavior is strongly dependent on the fabric density and free volume available for the constituent yarns and their filament. 2) Shear hysteresis at the small shear angle(2HG) is dependent more on the yarn tensile properties than on the fabric structure. 3) Shear hysteresis at the shear angle, 5(2HG5) is dependent more on the interaction between two crossing yarns which is directly related on the fabric structure than on the yarn tensile properties.

  • PDF

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

Computational Flow Analysis on Improvement Effect of Wind Shear by a Structure Installed Upstream of a Wind Turbine (풍력발전기 풍상부 지면설치 구조물에 의한 풍속전단 개선효과의 전산유동해석)

  • Kim, Hyun-Goo;Woo, Sang-Woo;Jang, Moon-Seok;Shin, Hyuong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.278-281
    • /
    • 2008
  • This study demonstrates the advantages of a shear-free structure designed to modify vertical profiles of wind speed in the atmospheric surface layer. Computational fluid dynamics(CFD) software, FLUENT is used to interpret the velocity field modification around the structure and wind turbine. The shapes of shear-free structure, installed at upstream toward prevailing wind direction, would be fences, buildings and trees, etc. According to the simulation results, it is obvious that wind shear between heights of wind turbine's blades is decreased together with a speed-up advantage. This would lead decrease of periodic wind loading caused by wind shear and power-out increase by flow uniformity and wind speed-up.

  • PDF