• 제목/요약/키워드: shear stress-strain

검색결과 825건 처리시간 0.028초

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.

부산 임기광산 광미의 전단속도에 따른 링 전단특성 연구 (Shear-Rate Dependent Ring-Shear Characteristics of the Waste Materials of the Imgi Mine in Busan)

  • 정승원;지상우;임길재
    • 한국지반공학회논문집
    • /
    • 제30권7호
    • /
    • pp.5-15
    • /
    • 2014
  • 휴 폐광산지는 산발생, 지하수 오염뿐만 아니라 침식 및 산사태 등 다양한 물리화학적 지질재해에 노출되어 있다. 임기광산 폐석적치장 광미를 대상으로 링 전단시험을 수행하여 전단속도에 따른 전단특성을 조사하고 한다. 본 연구에 있어 마찰저항을 최소화할 목적으로 링 전단상자 오링(O-ring)은 전단동안 회전이 가능하도록 설계되었다. 1차 시험은 일정한 수직응력(50kPa)과 전단속도(0.1mm/sec) 조건에서 전단시간에 따른 전단응력을 조사하였다. 2차 시험은 일정한 수직응력 조건에서 전단속도를 0.01, 0.1, 1, 10, 50, 100mm/sec로 순차적으로 증가시켜 전단속도에 따른 전단응력을 조사하였다. 3차 시험은 일정한 전단속도(0.1mm/sec)하에서 수직응력을 20, 40, 60, 80, 100, 150kPa로 증가시켜 각 경우에 대한 전단응력을 조사하였다. 시험결과에 따르면, 배수조건에 관계없이 임기광산 폐석적치장광미시료는 전단연화거동(strain softening behavior)을 보였다. 특히 전단속도가 10mm/sec보다 작은 경우 잔류전단응력은 100~300초 사이에 일정한 값에 도달하는 것으로 나타났다. 2차와 3차 시험결과에 따르면, 배수조건에 관계없이 전단응력은 전단속도와 수직응력의 함수로 나타났다. 하지만, 배수조건에 따라 링 전단상자 전단부에서 상이한 입자파쇄 특성이 관측되었다. 배수조건시 전단상자 전단면에서 하단까지 넓은 전단띠가 형성된 것에 반해, 비배수조건시 전단면에 국부 전단띠가 형성되었다. 이러한 점에 비추어 볼 때, 전단속도에 따른 입자파쇄 특성은 산사태 유동성을 높이는 중요한 인자로 판단된다.

Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading

  • Long, Xu;Lee, Chi King
    • Computers and Concrete
    • /
    • 제15권5호
    • /
    • pp.807-831
    • /
    • 2015
  • In the previous analytical studies on 2D reinforced concrete (RC) beam-column joints, the modified compression field theory (MCFT) and the strut-and-tie method (STM) are usually employed. In this paper, the limitations of these analytical models for RC joint applications are reviewed. Essentially for predictions of RC joint shear behaviour, the MCFT is not applicable, while the STM can only predict the ultimate shear strength. To eliminate these limitations, an improved STM is derived and applied to some commonly encountered 2D joints, viz., interior and exterior joints, subjected to monotonic loading. Compared with the other STMs, the most attracting novelty of the proposed improved STM is that all critical stages of the shear stress-strain relationships for RC joints can be predicted, which cover the stages characterized by concrete cracking, transverse reinforcement yielding and concrete strut crushing. For validation and demonstration of superiority, the shear stress-strain relationships of interior and exterior RC beam-column joints from published experimental studies are employed and compared with the predictions by the proposed improved STM and other widely-used analytical models, such as the MCFT and STM.

Effects of freeze-thaw cycle on mechanical properties of saline soil and Duncan-Chang model

  • Shukai Cheng;Qing Wang;Jiaqi Wang;Yan Han
    • Geomechanics and Engineering
    • /
    • 제38권3호
    • /
    • pp.249-260
    • /
    • 2024
  • In order to study the mechanical propertied and change rules of undrained shear behavior of saline soil under the freeze-thaw cycles, an improved constitutive model reflecting the effects of freeze-thaw cycles was proposed based on the traditional Duncan-Chang model. The saline soil in Qian'an County, western Jilin Province, was selected as the experimental object. Then, a set of freeze-thaw cycles (0, 1, 10, 30, 60, 90, 120) tests were conducted on the saline soil specimens, and conventional consolidated undrained triaxial shear tests were conducted on the saline soil specimens that underwent freeze-thaw cycles. The stress-strain relationship was obtained by the triaxial shear test. The model parameters have a corresponding regression relationship with the number of freeze-thaw cycles. Finally, based on the function expression of the model parameters, the modified Duncan-Chang model with the number of freeze-thaw cycles as the influence factor was established, whilst the calculation program of the modified model is compiled. Based on the test results, the stress-strain relationship of the saline soil specimen shows strain hardening. The shear strength gradually decreases with the increase of freeze-thaw cycle. The 10 freeze-thaw cycles are the turning point in the trend of changes of the mechanical properties of saline soils. The calculated and experimental stress-strain relationship are compared, and the comparison between the calculated value of the model and the experimental value showed that the two had a good consistency, which verified the validity of the modified Duncan-Chang model in reflecting the effects of the freeze-thaw cycle.

트러스 모델에 의한 철근콘크리트 저형 전단벽의 전단강도 (Shear Strength of Inn-Rise Reinforced Concrete Shear Walls with Truss Model)

  • 윤현도;최창식;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.97-102
    • /
    • 1992
  • To predict the shear strength of low - rise reinforced concrete shear walls with boundary elements, truss model theory considering the Vecchio - Collins stress - strain curve for softened concrete is applied. The model transforms cracked shear walls with a truss which consists of vertical bar. horizontal bar and diagonal concrete strut, and is based on equilibrium and compatibility conditions among three truss components, as well as stress - strain relationship considered for softening in diagonal concrete strut. In barbell specimens(M/VD = 0.75. fc = 420 kg/$\textrm{cm}^2$), the ratio of experimental to analytical maximum shear strength was within 0.83 ν$_{exp}$. / ν$_{cal}$. 1.25 with a relatively good agreement. As a result, the truss model was observed to be capable of predicting the maximum shear strength wi th a reasonable accuracy.acy.

  • PDF

An asymptotic multi-scale approach for beams via strain gradient elasticity: surface effects

  • Kim, Jun-Sik
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권1호
    • /
    • pp.15-33
    • /
    • 2016
  • In this paper, an asymptotic method is employed to formulate nano- or micro-beams based on strain gradient elasticity. Although a basic theory for the strain gradient elasticity has been well established in literature, a systematic approach is relatively rare because of its complexity and ambiguity of higher-order elasticity coefficients. In order to systematically identify the strain gradient effect, an asymptotic approach is adopted by introducing the small parameter which represents the beam geometric slenderness and/or the internal atomistic characteristic. The approach allows us to systematically split the two-dimensional strain gradient elasticity into the microscopic one-dimensional through-the-thickness analysis and the macroscopic one-dimensional beam analysis. The first-order beam problem turns out to be different from the classical elasticity in terms of the bending stiffness, which comes from the through-the-thickness strain gradient effect. This subsequently affects the second-order transverse shear stress in which the surface shear stress exists. It is demonstrated that a careful derivation of a first strain gradient elasticity embraces "Gurtin-Murdoch traction" as the surface effect of a one-dimensional Euler-Bernoulli-like beam model.

비틀림전단시험에 의한 모래의 응력 -변형률 거동 (The Stress -Strain Behavior of Sand in Torsion Shear Tests)

  • 남정만;홍원표
    • 한국지반공학회지:지반
    • /
    • 제9권4호
    • /
    • pp.65-82
    • /
    • 1993
  • 주응력회전시 모래의 응력-변형률 거동을 조사하기 위하여 Santa Monies해변의 모래에 대 한 비틀림전단시험이 여러가지 응력경로에 대해 실시되었다. 모래에 대한 비틀림전단시험에서는 점토에서와 달리 Torque의 작용방향을 시계방향과 반시계방향 모두에 대해 작용하였으며, 공시체의 측방변형량 측정도 내부압축실의 체적변형량으로부터 평균 변형량을 측정함으로 점토시 사용하였던 Clip gage를 제거하여 시험을 보다 편리하게 할 수 있었으며 어느 일부분에서 측정했던 측방변형을 대표값으로 사용하였던 단점을 보완하였다. 그리고 공시체의 제작은 모래를 공중낙하법에 의해 실시하여 밀도를 균등하게 만들었으며 공시체의 체적변형량은 COI 가스를 이용하여 체적변형량 측정을 보다 정확하게 할 수 있었다. 시험결과로부터 비틀림전단시험에 의한 모래의 응력 -변형률 거동이 조사되었으며 또한 주응력축 회전효과가 검토되었다. 그리고 연직응력이나 전단응력중 하나가 고정인 상태에서 다른 하중을 작용하였을시 선행하중에 의한 결합효과(coupling effect)에 의해 선행하중에 대한 전단변형률과 연직변형률이 계속 관찰되었다. 한편 축변형률에 대한 주응력비 o1/o3의 관계에서 파괴가 발생하는 축변형률의 위치는 축차주응력비 b(=(o2-o3)/(o1-o3))가 증가함에 따라 감소하는 것으로 나타났다.

  • PDF

직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석 (Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model)

  • 한중근
    • 한국환경복원기술학회지
    • /
    • 제5권4호
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

The stress analysis of a shear wall with matrix displacement method

  • Ergun, Mustafa;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.205-226
    • /
    • 2015
  • Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

실트 함유율에 따른 낙동강 모래의 반복전단거동 (Undrained Cyclic Shear Behavior for Nak-Dong River Sand Due to Silt contents)

  • 김영수;김대만;신지섭;나윤영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.311-317
    • /
    • 2008
  • This study was carried out to improve our understanding about the influence of silt content on the stress-strain of sand under cyclic loading. Soil specimens were prepared by wet-tamping method as same void ratio and specimen's silt contents on total weights was changed from 0% to 20%. Also, effects of the silt contents on the stress-strain response were studied at different anisotropic consolidation ratio, Kc=1.0, 1.5, 2.0 condition. As a result, cyclic shear strength decreased as silt contents increased in same stress ratios. In same silt contents, cyclic shear strength increased as Kc increased in lower silt contents, but in higher silt contents, it had reverse results.

  • PDF