• 제목/요약/키워드: shear strain rate

Search Result 205, Processing Time 0.025 seconds

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

Study on Cryogenic Mechanical Behavior of 6000 Series Aluminum Alloys (6000계열 알루미늄 합금의 극저온 기계적 거동 연구)

  • Park, Doo-Hwan;Kim, Jeong-Hyeon;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.85-93
    • /
    • 2015
  • In this study, tensile tests were performed on aluminum alloys (AA6061 and AA6082) to investigate their mechanical behaviors at cryogenic temperatures. The temperature was varied from 110 K up to 293 K, and quasi-static strain rates of 10−4 s−1 −10−2 s−1 were taken into account for the tests. The experimental results were analyzed to find the dependence on the temperature, strain rate, and fractured surfaces. As a result, it was found that the strength and elongation of the aluminum alloys were improved when the temperature was decreased. In addition, it was confirmed that the mechanical behaviors of the aluminum alloys were not dependant on the strain rate. Under a tensile load, two types of fractures were seen in the aluminum alloys: cup-cone (AA6061) and shear (AA6082).

Effects of the Freeze/Thaw Process on the Strength Characteristics of Soils(1) (동결-융해작용이 흙의 제강도특성에 미치는 영향(I))

  • 유능환;박승법
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.43-53
    • /
    • 1989
  • In this research programs, a series test was conducted to show the effects of freeze/thaw process on the various soil properties. The tests were carried out taken from the west sea shore of Korean peninsular and the west sea shore of Scotland, and their results are as follows; 1. There was a positive total heave in a freezing run, although water may he expelled for the sample initially. The water flow must he reverse' from expulsion to intake. 2. The confining pressure had an overriding influence on the heave and frost penetration, a sudden change of the axial strain at failure with strain rate was observed occuring at a strain rate between 10-5 and 10-6, and the initial friction angle of frozen clay was appeared zero. 3. There was shown a significant decrease in liquid limit of soil which was subjected to freeze/thaw process for the initial value of about 20% because of soil particles aggregation. 4. The cyclic freeze/thaw caused a sinificant reduction in shear strength and its thixotropic regain. The frozen/thawed soil exibited negative strength regain, particularly at high freeze/thaw cycles. 5. The freezing temperature greatly influenced on the failure strength of soils and this. Trend was more pronounced the lower the freezing temperature and shown the ductile failure with indistinct peaks.

  • PDF

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

Influencing of drying-wetting cycles on mechanical behaviors of silty clay with different initial moisture content

  • Shi-lin Luo;Da Huang;Jian-bing Peng;Fei Liu;Xiao-ran Gao;Roberto Tomas
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.307-317
    • /
    • 2024
  • To get a better understanding of the effect of drying-wetting cycles (DWC) on the mechanical behaviors of silty clay hiving different initial moisture content (IMC), the direct shear tests were performed on sliding band soil taken from a reservoirinduced landslide at the Three Gorges Reservoir area. The results indicated that, as the increasing number of DWC, the shear stress-displacement curves type changed from strain-hardening to strain-softening, and both the soil peak strengths and strength parameters reduced first and then nearly remain unchanged after a certain number of DWC. The effects of DWC on the cohesion were predominated that on the internal friction angle. The IMC of 17% is regarding as the critical moisture content, and the evolution laws of both peak shear strength and strength parameters presented a reversed 'U' type with the rising of the IMC. Based on it, a strength deterioration evolution model incorporating the influence of IMC and DWC was developed to describe the total degradation degree and degradation rate of strength parameters, and the degradation of strength parameters caused by DWC could be counterbalanced to some extent as the soil IMC close to critical moisture content. The microscopic mechanism for the soil strength caused by the IMC and DWC were discussed separately. The research results are of great significance for further understanding the water-weakening mechanicals of the silty clay subjected to the water absorption/desorption.

Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.551-565
    • /
    • 2019
  • A total of 36 carbon steel and stainless steel bolted connections subjected to shear loading at different strain rates was experimentally investigated. The connection specimens were fabricated from carbon steel grades 1.20 mm G500 and 1.90 mm G450, as well as cold-formed stainless steel types EN 1.4301 and EN 1.4162 with nominal thickness 1.50 mm. The connection tests were conducted by displacement control test method. The strain rates of 10 mm/min and 20 mm/min were used. Structural behaviour of the connection specimens tested at different strain rates was investigated in terms of ultimate load, elongation corresponding to ultimate load and failure mode. Generally, it is shown that the higher strain rate on the bolted connection specimens, the higher ultimate load was obtained. The ultimate loads were averagely 2-6% higher, while the corresponding elongations were averagely 8-9% higher for the test results obtained from the strain rate of 20 mm/min compared with those obtained from the lower strain rates (1.0 mm/min for carbon steel and 1.5 mm/min for stainless steel). The connection specimens were generally failed in plate bearing of the carbon steel and stainless steel. It is shown that increasing the strain rate up to 20 mm/min generally has no effect on the bearing failure mode of the carbon steel and stainless steel bolted connections. The test strengths and failure modes were compared with the results predicted by the bolted connection design rules in international design specifications, including the Australian/New Zealand Standard (AS/NZS4600 2018), Eurocode 3 - Part 1.3 (EC3-1.3 2006) and North American Specification (AISI S100 2016) for cold-formed carbon steel structures as well as the American Specification (ASCE 2002), AS/NZS4673 (2001) and Eurocode 3 - Part 1.4 (EC3-1.4 2015) for stainless steel structures. It is shown that the AS/NZS4600 (2018), EC3-1.3 (2006) and AISI S100 (2016) generally provide conservative predictions for the carbon steel bolted connections. Both the ASCE (2002) and the EC3-1.4 (2015) provide conservative predictions for the stainless steel bolted connections. The EC3-1.3 (2006) generally provided more accurate predictions of failure mode for carbon steel bolted connections than the AS/NZS4600 (2018) and the AISI S100 (2016). The failure modes of stainless steel bolted connections predicted by the EC3-1.4 (2015) are more consistent with the test results compared with those predicted by the ASCE (2002).

Rheological Properties of Exopolysaccharide p-KG03 Produced by Marine Microalgae Gyrodinium impudicum strain KG03

  • Im, Jeong-Han;Kim, Seong-Jin;Park, Gyu-Jin;An, Se-Hun;Lee, Hyeon-Sang;Lee, Hong-Geum
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.611-614
    • /
    • 2003
  • The rheological properties of exopolysaccharide, p-KG03, produced by marine microalgae Gyrodinium impudicum strain KG03 had been studied. The intrinsic viscosity of this p-KG03 was calculated to 65.22 and 50.75 $d{\ell}/g$ using Huggins and Kramer equations (xanthan gum 24.41 and 24.03). Aqueous dispersions at p-KG03 concentrations ranging from 0.1 to 1.0 % (w/w) showed marked shear-thinning properties as Power-Law behavior. In aqueous dispersions of p-KG03 1.0 %, consistency index (K) and flow behavior index (n) were 2,172 and 0.52. The apparent viscosity and the influence of shear rate on different conditions as p-KG03 concentrations, pH, NaCl, $CaCl_2$ and temperature in aqueous solutions were measured. And p-KG03 had mixed with aqueous solutions of xanthan gum and gellan gum, and invested the change of mixed aqueous solution behavior.

  • PDF

Powder Densification Using Equal Channel Angular Pressing (ECAP 공정을 이용한 분말의 치밀화)

  • Yoon Seung-Chae;Seo Min-Hong;Hong Sun-Ig;Kim Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.124-128
    • /
    • 2006
  • In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

Distribution of Excess Porepressure caused by PCPT into OC clay

  • Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.312-333
    • /
    • 2006
  • This paper presents the results of an analysis of the excess porewater pressure distribution due to piezocone penetration in overconsolidated clays. From piezocone test results for moderately and heavily overconsolidated clays, it was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically to the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. The equation developed in this study based on the modified Cam clay model and the cylindrical cavity expansion theory, which take into consideration the effects of the strain rate and stress anisotropy, provide a good prediction of the initial porewater pressure at the piezocone location. The method of predicting the spatial distribution of excess porewater pressure proposed in this study is based on a linearly increasing ${\Delta}u_{shear}$. In the shear zone and a logarithmically decreasing ${\Delta}u_{oct}$, and is verified by comparing with the excess porewater pressure measured in overconsolidated specimens at the calibration chamber.

  • PDF

A Numerical Analysis for Plastic Deformation of a Ti Alloy and a study for Shear Band Analysis (Ti 합금 형단조에서의 소성 해석 및 전단 밴드 분석)

  • 윤수진;손영일;은일상
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • This study summarizes the numerical analyses of a Ti alloy deformation under a back extrusion process. Amongst metallic parts in a small propulsion motor case, a Ti-6Al-4V alloy is used extensively. However, the Ti alloy shows a great deal of shear band formation which often leads to a fracture due to a narrow working temperature window. Moreover, the shear band tends to develop over an area where a contact occurs between the hot work piece and the die wall, due to localized cooling. Thus, heating the dies is often required to overcome the deformation localization. Therefore, it becomes necessary to investigate the internal temperature and strain rate distribution during forging process of a Ti alloy. Furthermore, a shear band analysis is peformed using a finite difference scheme and a comparison is made between steel and Ti alloy.

  • PDF