• Title/Summary/Keyword: shear softening

Search Result 160, Processing Time 0.02 seconds

Nonlinear finite element analysis of fibre reinforced concrete deep beams

  • Swaddiwudhipong, S.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.437-450
    • /
    • 1996
  • A study on the behaviour of fibre reinforced concrete deep beams with and without web openings is carried out using nonlinear finite element analysis. Eight node isoparametric plane stress elements are employed to model the fibre reinforced concrete materials. Steel bars are treated using a compatible three node truss elements. The constitutive equations for fibre reinforced concrete materials take into account the softening effect of co-existing shear strains. Element stiffness at each step is formulated based on the tangent modulus at the current level of principal strains. Transformation between principal directions and global coordinate system is imposed. Comparison of analytical results with experimental values indicates reasonably good agreement. The proposed numerical model can be used to study the behaviour of this composite structures of practically any geometries.

Charateristics of Adhesive Joint between Concrete and FRP Using Numerical Method (수치 모델을 사용한 콘크리트-FRP 부착면의 거동 특성)

  • 조정래;조근희;박영환;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.219-222
    • /
    • 2003
  • Substantial experimental and theoretical work exists on the bond characteristics of FRP-concrete adhesive joints. Experimental studies show that the bond strength cannot always increase with an increase in the bond length, and that the ultimate strength is strongly influenced by the concrete strength. To solve this feature, analytic solutions based on fracture mechanics are widely used, and the local shear stress-slip curve with a softening branch is known as more rational model. The analytic solution, however, cannot describe various shapes of model curve. In this study, numerical method using interface element is introduced to express various shapes of model curve. Characteristics of adhesive joint is investigated for the shapes of the model curve and their parameters. And the numerical solutions are compared with the test results of CFRP sheet adhesive joints.

  • PDF

Bond-Slip Model for FRP-Concrete Interface II: Characteristics of Adhesive Joint (FRP-콘크리트 계면의 부착모델 II : 부착특성)

  • 조정래;조근희;박영환;박종섭;유영준;정우태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.902-907
    • /
    • 2003
  • Substantial experimental and theoretical work exists on the bond characteristics of FRP-concrete adhesive joints. Analytic solutions based on fracture mechanics are most commonly accepted for theoretical work on joint. The solutions may be derived for the simple form of the shear strees-slip curve. And it is difficult to determine the model parameters consisting the curve. In this study, the bilinear curve with softening branch is introduced. The model parameters are determined by the method described by the companion paper with comparison of test results. There are many uncertainties in the test results of CFRP sheet adhesive joints, so that test results used for the construction of the regression problem should be reasonably selected.

  • PDF

Hypoelastic modeling of reinforced concrete walls

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.195-216
    • /
    • 2008
  • This paper presents a new hypoelasticity model which was implemented in a nonlinear finite element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity constitutive relationship utilizing the rotation of material axis through successive iterations. The model can account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high levels of compressive load. This research introduces the modified version of the common application orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the principal of "simplicity" by improvement of the "capability" The results of analyses of experimental reinforced concrete walls are presented to confirm the abilities of the proposed relationships.

Localizd Failure and Fracture energies in Concrete under Compression (압축 응력 하에서의 콘크리트의 파괴거동)

  • 최석환
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.165-174
    • /
    • 1997
  • 고강도 및 보통강도 콘크리트의 압축파괴 거동에 영향을 미치는 요소들 (재료의 강도, 시편의 세장비, 전단구속, 실험장치의 강성, 피드백 신호)에 관한 연구가 수행되었다. 피드백 신호로 자동 조절되는 유압 실험기계항에서 원주변형 피드백 신호를 사용하여 연화곡선을 구했다. 재하장치로부터의 단부 전단 구속을 줄이면 제한된 영역 안에서 재하방향 균형이 형성되고, 또한 연화곡선의 경사가 급해지고 파괴에너지도 작아진다. 이때 길이가 큰 시편에서 파괴에너지가 커지는 것은 안장과는 달리 단순균열이 형성되는 것이 아니고 , 파괴가 용적을 가진다는 것을 의미한다. 압축응력하의 국부 파괴는 재료특성이 아니므로, 단부 전단구속이 없더라도 재료적 특성으로서의 응력-변형도 곡선은 정하기 어렵다.

Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference

  • Nguyen, Cong-Uy;Hoang, Truong-Vinh;Hadzalic, Emina;Dobrilla, Simona;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.411-438
    • /
    • 2022
  • In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be viewed as upscaling homogenization.

A Study on the Shear Behaviors of Geosynthetic-soil Interface in the Waste Landfill Site (폐기물 매립장 차수시설 접촉면 전단특성에 관한 연구)

  • Park, Inn-Joon;Kwak, Chang-Won;Park, Jum-Bum;Cho, Jun-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.45-54
    • /
    • 2012
  • Various geosynthetics are widely applied to civil structures and waste landfill site for reinforcement and water resistance. The use of geosynthetics inevitably involves the coupled behaviors of different materials which include large displacement and strain-softening behaviors, etc. In this study, the effect of chemical element in the leachate on the interface shear strength under the cyclic loading condition was analyzed. The Multi-purpose Interface Apparatus (M-PIA) has been modified and cyclic direct shear tests have been performed. The submerging period of each specimen is 200 days. Additionally, the Field-Emission Scanning Electronic Microscopy (FIB) analysis has been also performed to induce the reason of the variation of disturbance function and verify the hypothesis on the decay-proof ability of geosynthetics. Consequently, the charateristics of chemical degradation of geosynthetic-soil interface are verified and the variation of the disturbance function is mainly caused by the different type of soil mineral decay, based on the FIB results.

Plasticity Model for Directionality of Concrete Crack Damages (콘크리트 균열 손상의 방향성을 고려한 다중파괴기준 소성 모델)

  • Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.655-664
    • /
    • 2007
  • The inherent characteristic of concrete tensile cracks, directional nonlocal crack damage, causes so-called rotating tensile crack damage and softening of compressive strength. In the present study, a plasticity model was developed to describe the behavior of reinforced concrete planar members In tension-compression. To describe the effect of directional nonlocal crack damage, the concept of microplane model was combined with the plasticity model. Unlike existing models, in the proposed model, softening of compressive strength as well as the tensile crack damage were defined by the directional nonlocal crack damage. Once a tensile cracking occurs, the microplanes of concrete are affected by the nonlocal crack damage. In the microplanes, microscopic tension and compression failure surfaces are calculated. By integrating the microscopic failure surfaces, the macroscopic failure surface is calculated. The proposed model was implemented to finite element analysis, and it was verified by comparisons with the results of existing shear panel tests.

Verification of NASCOM : Nonlinear Finite Element Analysis for Structural Concrete (NASCOM에 의한 실험결과 예측)

  • 조순호
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory), considering the effect of compression softening in cracked concrete, and macro-scopic and rotating crack models etc., was presented for the nonlinear behaviour of structural concrete. Considering the computational efficency and the ability of modelling the post-ultimate behaviour as major concerns, the Incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Non1inear Analysis of Structural Concrete by FEM : Monotonic Loading) developed in this way enables the predictions of strength and deformation capacities in a full range, crack patterns and their corresponding widths, and yield extents of reinforcement. As the verification purpose of NASCOM, the predictions were made for Bhide's Panel(PB21) and Leonhardt's deep beam tests. The predicted results shows somewhat stiff behaviour for the panel test, and vice versa for deep beam tests. More refining process would be necessary hereafter in terms of more accurately simulating the effects of tension-stiffening and compression softening in concrete.

1g Shaking Table Test on Soil and Stone-column Interaction Behavior under Seismic Loading (1g 진동대 실험을 이용한 지반-스톤칼럼의 상호작용 거동에 관한 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Kim, Mi-Na;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.115-124
    • /
    • 2012
  • The responses of stone column-improved ground under seismic loading are investigated using a series of 1g shaking table tests. These tests show similar results to those of one dimensional numerical models for stone column-improved ground based on Baez's assumption on the soil and stone-column interaction. The experimental and numerical results show that the stone column can prevent large shear deformations incurred due to cyclic softening in clayey deposits, but they also show that the surface acceleration in the improved clayey deposits may amplify more than that in unimproved clayey deposits when subjected to short periodic seismic motions.