• Title/Summary/Keyword: shear resisting capacity

Search Result 128, Processing Time 0.023 seconds

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.

Design of RC dual system building using special seismic detail (내진특수상세를 적용한 RC 이중골조 건물의 설계)

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.190-193
    • /
    • 2006
  • The definition of the Dual system is that the total seismic force resistance is to be provided by the combination of the moment frame and the shear walls or braced frames in proportion to their stiffness and the moment frame shall be capable of resisting at least 25% of the design force in Korean Building Code 2005 (KBC 2005). But, the definition of moment frame is ambiguous whether the moment frame include the imaginary columns in the shear wall (Case I) or include only the columns outside the shear wall (Case II). 60-story RC building was designed as dual system for Case I and Case II, and the required strength and reinforcement are compared. Moment and axial capacity of the shear wall of Case II decreased about 5% due to the absence of the column in the shear wall. The requirement of upper and bottom reinforcement of slab in Case II increased 13% and 40%, respectively, when compared to those of Case I. The required longitudinal reinforcement in columns for Case II is about 1.5 times larger than that of Case I.

  • PDF

The Study on Degree of Coupling in Coupled Shear Wall System (병렬 전단벽의 커플링 정도에 관한 연구)

  • Park Wan-Shin;Yoon Hyun-Do;Hwang Sun-Kyung;Kim Sun-Woo;Han Min-Ki;Lee Won-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.135-138
    • /
    • 2005
  • Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. It includes that the evaluation of the degree of coupling between the shear walls and the coupling beams. It is demonstrated through a review of experimental investigations of coupling beam behavior that often the coupling beam ductility demand exceeds the expected available ductility. As a result, it is possible that coupled shear wall system will not behave as desired in the course of a significant seismic event. Limits to the allowable degree of coupling are proposed as a remedy to this apparent deficiency.

  • PDF

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.

Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards

  • Dashti, Farhad;Dhakal, Rajesh P.;Pampanin, Stefano
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.667-689
    • /
    • 2014
  • Structural walls (also known as shear walls) are one of the common lateral load resisting elements in reinforced concrete (RC) buildings in seismic regions. The performance of RC structural walls in recent earthquakes has exposed some problems with the existing design of RC structural walls. The main issues lie around the buckling of bars, out-of plane deformation of the wall (especially the zone deteriorated in compression), reinforcement getting snapped beneath a solitary thin crack etc. This study compares performance of a typical wall designed by different standards. For this purpose, a case study RC shear wall is taken from the Hotel Grand Chancellor in Christchurch which was designed according to the 1982 version of the New Zealand concrete structures standard (NZS3101:1982). The wall is redesigned in this study to comply with the detailing requirements of three standards; ACI-318-11, NZS3101:2006 and Eurocode 8 in such a way that they provide the same flexural and shear capacity. Based on section analysis and pushover analysis, nonlinear responses of the walls are compared in terms of their lateral load capacity and curvature as well as displacement ductilities, and the effect of the code limitations on nonlinear responses of the different walls are evaluated. A parametric study is also carried out to further investigate the effect of confinement length and axial load ratio on the lateral response of shear walls.

Evaluation of the Shear Strength Component by Circular Transverse Reinforcement in Reinforced Concrete Columns (철근콘크리트 기둥에서 원형전단철근에 의한 전단강도 산정)

  • 하태훈;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.982-988
    • /
    • 2002
  • Current design equations for shear strength of reinforced concrete columns generally overestimate the shear strength contribution by the circular transverse reinforcement. This is due to the simplification of the discrete distribution of the reinforcement to the continuous one and the imprudent application of the classical truss model to the circular section, which is different in shear-resisting mechanism from the rectangular section. This study presents a rational model for the prediction of shear strength contribution by the circular transverse reinforcement considering the starting location of a diagonal crack, the number of transverse reinforcing bars crossing the main crack and the geometrical strength component of the transverse resistance. It was found that, for lower amount transverse reinforcement, the crack starting point and the number of crack crossing bars greatly influence the shear-resisting capacity. Proposed model leads to a reliable design equation which is derived using a linear regression method and is in good agreement with the lower bound of exact strength curve.

Seismic Resisting Capacity Enhancement by S Type Strut Steel Damper Strengthening (S형 스트럿 강재 댐퍼 보강에 의한 RC 골조의 내진성능 향상)

  • Lee, Hyun-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.43-50
    • /
    • 2018
  • The purpose of this study is to improve the seismic performance of RC framed buildings such as piloti buildings and school facilities. For this purpose, a half size RC frame specimen (SFD) was made and the inside of frame was reinforced with steel frame and S type strut steel damper. The experimental results are compared with those of the previous studies under the same conditions. The comparative specimens are non-reinforced specimen (BF) and damper reinforced specimen (AFD) that confined the column with an aramid sheet. As a result of comparing the maximum strength, stiffness degradation and energy dissipation capacity, SFD specimen was evaluated to be better than comparative specimens. According to the experimental results and FE analysis results, it was confirmed that the shear deformation was concentrated in the steel damper. And it was showed that cracks were concentrated at the upper and lower ends of the strut of the S type damper, and the final failure was observed at struts. From this, it was verified that the steel damper appropriately dissipates energy due to the lateral load.

Nonlinear Static Analysis of Irregular RC Buildings (비정형 철근콘크리트건물의 비선형 정적해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.225-232
    • /
    • 2006
  • Three building structures haying piloti frames in the lower two stories were selected as prototypes and were analyzed using nonlinear static analysis to investigate the seismic capacity of these buildings. The first one has a symmetrical moment resisting frame (Model 1), the second has an infilled shear wall in the central frame (Model 2), and the third has an infilled shear wall only in one of exterior frames (Model 3), The analytical results were compared with those of shaking table tests with regards to the overstrength and ductility of the irregular buildings. Infilled shear wall in Model 2 and Model 3 induced large overstrength factors, 6.8 and 6.0, respectively, which are about two times larger than that of Model 1, 3.5. The displacement ductility ratio in Model 2 was only 2.5, due to the shear failure of wall in the piloti stories, whereas those of Model 1 and Model 3 reached 3.2.

  • PDF

Experimental Study for Performance Evaluation of Structural Details of Girder-Abutment Joint in Integral Abutment Steel Bridge (일체식교대 강교량의 거더-교대 연결부 상세의 거동평가를 위한 실험적 연구)

  • Kim, Sang-Hyo;Yoon, Ji-Hyun;Choi, Woo-Jin;Kim, Jun-Hwan;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.61-72
    • /
    • 2011
  • In this study, the structural details of steel girder-abutment joints with shear connectors and tie bars were suggested to improve the rigid behavior and crack-resisting capacity of the joints in integral bridges. Experimental loading tests of steel girder-abutment joint specimens with the proposed and empirically constructed structural details were carried out, and the capacities and behavioral characteristics of the joints were evaluated through loading tests. Based on the results of the loading tests, it was estimated that all types of tested joints can be applied to the steel girder-abutment joints because they have sufficient stiffness and crack-resisting capacity under the required design and yield loads. According to the initial stiffness, crack propagations, and load-strain relationships, however, the joints with shear connectors and tie bars showed better structural behaviors compared to the empirically constructed joint.

Capacity design of boundary elements of beam-connected buckling restrained steel plate shear wall

  • Liu, Wen-Yang;Li, Guo-Qiang;Jiang, Jian
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • As a lateral load resisting component, buckling restrained steel plate shear walls (BRW) have excellent energy dissipating capacity. Similar to thin steel plate shear walls, the mechanical behavior of BRWs depends on the boundary elements (adjacent beams and columns) which need adequate strength and stiffness to ensure the complete yielding of BRWs and the emergence of expected plastic collapse mechanism of frame. This paper presents a theoretical approach to estimate the design forces for boundary elements of beam-connected BRW (i.e., The BRW is only connected to beams at its top and bottom, without connections to columns) using a fundamental plastic collapse mechanism of frame, a force transferring model of beam-connected BRW and linear beam and column analysis. Furthermore, the design method of boundary beams and columns is presented. The proposed approach does not involve nonlinear analyses, which can be easily and efficiently used to estimate the design forces of beams and columns in a frame with BRWs. The predicted design forces of boundary elements are compared with those from nonlinear finite element analyses, and a good agreement is achieved.