• Title/Summary/Keyword: shear resistance formula

Search Result 31, Processing Time 0.021 seconds

A New Refined Truss Modeling for Shear-Critical RC Members (Part I) - lts derivation of Basic Concept - (전단이 지배하는 RC부재의 새로운 트러스 모델링 기법 연구 (전편) - 기본 개념 유도를 중심으로 -)

  • Kim Woo;Jeong Jae-Pyong;Kim Dae-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.785-794
    • /
    • 2004
  • This paper describes a new refined truss modeling technique derived based on the well-known relationship of V=dM/dx=zdT/dx+Tdz/dx in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear behavior can be gained by considering the variation of the internal arm length along the span, so that the shear resistance mechanism can be expressed by the sum of two base components; arch action and beam action. The sharing ratio of these two actions is determined by accounting for the compatibility of deformation associated to the two actions. Modified Compression Field Theory and the tension-stiffening effect formula in CEB/FIP MC-90 are employed in calculating the deformations. Then the base equation of V=dM/dx has been numerically duplicated to form a new refined truss model.

Effects of loading frequency and specimen size on the liquefaction resistance of clean sand

  • Sung-Sik Park;Dong-Eun Lee;Dong-Kiem-Lam Tran
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • This study investigates the effects of loading frequency (f) and specimen size on the liquefaction resistance of clean sand. A series of cyclic direct simple shear tests were conducted on Jumunjin sand with varying consolidated relative densities (40% and 80%), f values (0.05, 0.10, and 0.20 Hz), and diameter to height (D/H) ratios (3.63, 3.18, 2.82, and 2.54). The results demonstrated the significant influence of f and D/H ratio on the number of cycles to liquefaction (Ncyc-liq) and the cyclic resistance ratio (CRR15). It was observed that increasing f linearly increased Ncyc-liq. Increasing the specimen height also led to higher Ncyc-liq values irrespective of the f or relative density. Moreover, a positive correlation between CRR15 and f indicated that higher f yielded higher CRR15. This relationship was more pronounced in dense sand than in loose sand. Specimen height also significantly affected CRR15, with increasing the specimen height resulting in higher CRR15 values. Furthermore, the effect of f on CRR15 was less significant compared to the influence of specimen height. The effect of f on the normalized cyclic resistance ratio (NCRR) was relatively negligible for loose sand but more substantial for dense sand depending on the D/H ratio. Data analysis revealed that the NCRR generally decreases as the D/H ratio increases. An interpolation formula was provided to calculate the NCRR based on the D/H ratio regardless of the f and relative density.

Measurement and Analysis of Bed Shear Stresses in Compound Open Channels using the Preston Tube (프레스톤튜브를 이용한 복단면 하도의 하상전단응력 측정 및 분석)

  • Lee, Du Han;Kim, Myounghwan;Kim, Won;Seo, Il Won
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.207-215
    • /
    • 2017
  • Hydraulic issues such as flow resistance, side wall correction, sediment, erosion and deposition, and channel design have close relation with distribution of bed shear stresses but the measurement of the distribution of bed shear stresses is not easy. In this study the Preston tube which makes possible relatively simple measurement of bed shear stresses is used to analyze the characteristics of bed shear distribution in compound open channels with different depth ratio. The Preston tubes are made and calibrated to develop the calibration formula and then they are applied to measure bed shear stress distribution in 5 cases depth ratio condition of compound channels. The results are compared with former experiment data, and characteristics of bed shear stress distributions are studied with different channel scales and Reynolds numbers. Although bed shear distributions with depth ratio show overall agreement with former studies, some differences are verified in bed shear variation, formation of inflection point in main channel, and distribution near floodplain junction which are due to high Reynolds number. Through the study applicability of the Preston tubes are also verified and characteristics of bed shear distribution in compound channels are suggested with Reynolds number and depth ratio.

Evaluation method and experimental study on seismic performance of column-supported group silo

  • Jia Chen;Yonggang Ding;Qikeng Xu;Qiang Liu;Yang Zhou
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.577-590
    • /
    • 2024
  • Considering the Column-Supported Group Silos (CSGSs) often arranged by rows in practical applications, earthquake responses will be affected by group effect. Since group effect presenting uncertainties, establishing the analytic model and evaluating characteristics of CSGSs seems necessary. This study aimed at providing a simplified method to evaluate seismic performances of the CSGSs. Firstly, the CSGSs with different storage granule heights are used as numerical examples to derive the base shear formula for three-particle dynamic analytical model. Then, the base shear distribution coefficient is defined as the group effect index. The simplified calculation method of the group silos based on the distribution coefficients is proposed. Finally, based on the empty, half, and full granular storage conditions, the empirical design parameters for the group silos system are given by combining finite element simulation with shaking table test. The group effect of storage granule heights of group silos on its frequency and base shear are studied by comparative analysis between group silos and independent single silo. The results show that the frequency of CSGSs decreases with the increasing weight of the stored granule. The connection between the column top and silo bottom plate is vulnerable, and structural measures should be strengthened to improve its damage resistance. In case of different storage granule heights, distribution coefficients are effective to reconstruction the group effect. The complex calculations of seismic response for CSGSs can be avoided by adopting the empirical distribution coefficients obtained in this study. The proposed method provides a theoretical reference for evaluation on the seismic performances of the CSGSs.

A Study on the Prediction of Welding Flaw Using Neural Network (인공 신경망을 이용한 실시간 용접품질 예측에 관한 연구)

  • Cho, Jae Hyung;Ko, Sang Hyun
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.217-223
    • /
    • 2019
  • A study in predicting defects of spot welding in real time in automotive field is essential for cost reduction and high quality production. Welding quality is determined by shear strength and the size of the nugget, and results depend on different independent variables. In order to develop the real-time prediction system, multiple regression analyses were conducted and the two dependent variables were obtained with sufficient statistical results with three independent variables, however, the quality prediction by the regression formula could not ensure accuracy. In this study, a multi-layer neural network circuit was constructed. The neural network by 10 dynamic resistance variables was constructed with three hidden layers to obtain execution functions and weighting matrix. In this case, the neural network was established with three independent variables based on regression analysis, as there could be difficulties in real-time control due to too many input variables. As a result, all test data were divided into poor, partial, and modalities. Therefore, a real-time welding quality determination system by three independent variables obtained by multiple regression analysis was completed.

A Study on the p-y Curves by Small-Scale Model Tests (모형실험을 통한 말뚝의 p-y 곡선에 관한 연구)

  • Kim, Tae-Sik;Jeong, Sang-Seom;Kim, Young-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.41-51
    • /
    • 2008
  • The load distribution and deformation of single piles which is embedded in Jumunjin sand and Kimhae clay are investigated, based on small scale model tests. Special attention is given to the consideration of flexural rigidity in laterally loaded piles. To consider the flexural rigidity of the pile, tests are performed with the aluminium piles of three different length under different relative densities and undrained shear strength. The test results indicate that the initial slope from the results of tests is proportional to the depth and pile-soil rigidity in both soils. But the increasing rate of the initial slope in the clay is less than in the sand. In addition, the soil resistance is more related to the depth and soil condition than the pile rigidity. Base on the test results, an empirical formula is proposed, which is good agreement with previously published small scale model test and field lateral load test.

Determinations of P, S-Wave Velocities and Pore Water Pressure Buildup with B-value for Nearly Saturated Sands (비배수 조건에서 반복하중을 받는 사질토의 B값(간극수압계수)에 따른 P파, S파 속도 및 간극수압 측정)

  • Lee, Sei-Hyun;Choo, Yun-Wook;Youn, Jun-Ung;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.71-83
    • /
    • 2007
  • Liquefaction resistance depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The B-value has been widely used to quantify the state of saturation of laboratory samples. However, it is practically impossible to determine in situ state of saturation by using the B-value. So, P-wave velocity can be alternatively used as a convenient index for evaluating the in situ state of saturation. In this paper, the Stokoe type torsional shear (TS) testing system was modified to saturate the specimen, with which it is also possible to measure P ($V_p$), S-wave velocity ($V_s$) and the excess pore water pressure buildup In order to examine the effect of B-value for nearly saturated sands. A series of the tests were carried out at 3 relative densities (40%, 50% and 75%) and various B-values using Toyoura sand. Based on the test results, the variations of $V_p\;and\;V_s$ with B-value were analyzed and compared with a existing theoretically derived formula. The normalized pore water pressure, $du/{\sigma}{_0}'$ and cyclic threshold shear strain, ${\gamma}^c_{th}$ with B-value were also analyzed. Additionally the test results related to pore water pressure were analyzed by $V_p$ to apply to the field seismic analysis.

The Study on Liquefaction Characteristics of Silty Sand Soils by Cyclic Triaxial Test (반복삼축시험에 의한 실트 모래 지반의 액상화 특성 연구)

  • Lee, Song;Jeon, Je-Sung;Kim, Tae-Hwun
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.133-152
    • /
    • 1999
  • The cyclic triaxial test was carried out to research liquefaction characteristics and sample disturbance effects of silty sand soils at the west coast in Korea. First, liquefaction in silty sand was generated when axial strain approached to $\pm10%$ of strain and behavior of pore pressure was similar to the formula suggested by Seed, Martin, and Lysmer(1975). Also, it was found that dilatancy was generated at failure. Secondly, the liquefaction evaluation methods suggested by many researchers were carried out and the results were compared. In these methods the weak depth in liquefaction was similar and the method carried out by cyclic triaxial test on remolded sample showed the least safety factor. Thirdly the stress ratio by cyclic triaxial test was compared with that obtained from SPT N-value as a kind of empirical methods. It was found that the effect of sample disturbance was relatively small when SPT N-value was less than 20, but there were large differences in safety factor and resistance of liquefaction in soil by the effects of disturbance and remolding when SPT N-value was more than 20.

  • PDF

Physical and Hand Properties of the Knitted Fabrics From Machine Knitting Fancy Yarns (기계편용 장식사 니트소재의 물성 및 감성 평가)

  • Park, Key-Yoon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.2
    • /
    • pp.125-138
    • /
    • 2008
  • For physical and hand property evaluation of fabrics, the knitted fabrics from 11 types of machines knitting fancy yarns, boucle (M1), knot (M2), snarl (M3), and slub (M4), tamtam (M5), tubular (M6), fur 1 (M7), bead (M8), fur 2 (M9), fur 3 (M10), and ladder (M11) yarns, were prepared with 7-10 G plain stitch. Washing test and pilling test had also been carried out. For hand properties by objective sensibility evaluation, 17 items of sir mechanical properties using KES-FB (Kawabata Evaluation System) had been measured. Then hand values of knitted fabrics were calculated with a calculation formula, namely KN-402-KT. Finally the total hand values were obtained through KN-301-WINTER. As a result of physical properties and objective evaluation for machines knitting fancy fabrics, most of them shrank in the direction of wale and course after the washing test, in which their shrinkage rate had a maximum of 3.5%. Therefore, the washing test indicated that the shrinkage ratio of knitted fabrics had a minor change. The results of the pilling test are mostly 4-5th grade, and all of the machines knitting fancy fabrics showed good results in the pilling resistance. In hand properties and objective sensibility evaluation, twisted fancy yarns, such as boucle (M1), knot (M2), snarl (M3), and slub (M4), were superior to bonding rigidity (B) and shear rigidity (G). The surface property between course and wale differs in all samples and course direction is tougher than wale direction. FUKURAMI (fullness and softness) of all samples have high values, besides NUMERI (smoothness) of tamtam (M5) and boucle (M1), which were rather good. Most samples except fur 1 (M7) had low KOSHI (stiffness) value. The total hand value (THV) of twisted yarns was low. This study proves that manufacturers, who plan knitting yarn products and knit fashion, can apply these data to develop machines knitting yarns and knits that fit the consumers' demands.

  • PDF

Shearing Strength Properties of Bolted, Drift-Pinned Joints of the Larix Glulam - Effects of Fastener Diameter, Slenderness and End-distance on Strength Properties - (낙엽송 집성재의 Bolt, Drift Pin 접합부의 전단강도 성능 평가 - 접합구 직경, 세장비, 끝면거리가 강도에 미치는 영향 -)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.69-78
    • /
    • 2008
  • Shearing strength test in tension type was investigated to determine the shear resistance of bolt and drift-pin connection of domestic larix glulam. The specimen was connected with bolt and drift-pin in the inserted plate type, and only bolt in the side plate type. The diameter of bolt and drift-pin used in the experiment are 12, 16 and 20 mm. The hole of bolt was drilled at the end-distance 5 d and 7 d. Tension load was loaded in the direction parallel to grain. The shear resistance was evaluated according to end-distance through this, the yield load was compared with the experimental yield load, using Larsen's formula. The prototype design strength is based on the yield load of end-distance 7 d and the reduction factor of end-distance 5 d was calculated. The results were as follows. 1. The average of maximum load of drift-pin connection was higher by 3~30% at the inserted type than at bolt connection with increasing diameter. In bolt connection, the average of maximum load of the side type was 1.54~2.07 times higher than that of the inserted type. In the same diameter, the average of maximum load of end-distance 7 d was higher by 8~44% than that of 5 d. 2. The bearing stress was 1.16~1.41 times higher at the inserted connection than at drift-pin connection, and 1.37~1.86 times higher at 7 d than at 5 d. Also, when the slenderness ratio was below 7.5 at drift-pin connection and below 6.0 at inserted connection, the lateral capacity was good. 3. The ratio of the experimental yield load and the predicted yield load calculated by Larsen's formula proposed by Larsen was 0.80~1.10 at inserted connection, and 0.75~1.46 at side connection. 4. When the inserted bolt connection was based on the yield load of end-distance 7 d, the reduction factor was 0.89 at 12 mm connection, 0.93 at 16 mm and 0.85 at 20 mm. The reduction factor was 0.89 at 12 mm the inserted drift-pin connection, 0.93 at 16 mm, 0.93 at 20 mm. The reduction factor was 0.79 at the side connection of the 12 mm bolt connection and 0.80 at 16 mm.