• Title/Summary/Keyword: shear reinforcement

Search Result 1,282, Processing Time 0.027 seconds

Determining the shear strength of FRP-RC beams using soft computing and code methods

  • Yavuz, Gunnur
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • In recent years, multiple experimental studies have been performed on using fiber reinforced polymer (FRP) bars in reinforced concrete (RC) structural members. FRP bars provide a new type of reinforcement that avoids the corrosion of traditional steel reinforcement. In this study, predicting the shear strength of RC beams with FRP longitudinal bars using artificial neural networks (ANNs) is investigated as a different approach from the current specific codes. An ANN model was developed using the experimental data of 104 FRP-RC specimens from an existing database in the literature. Seven different input parameters affecting the shear strength of FRP bar reinforced RC beams were selected to create the ANN structure. The most convenient ANN algorithm was determined as traingdx. The results from current codes (ACI440.1R-15 and JSCE) and existing literature in predicting the shear strength of FRP-RC beams were investigated using the identical test data. The study shows that the ANN model produces acceptable predictions for the ultimate shear strength of FRP-RC beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model provides more accurate predictions for the shear capacity than the other computed methods in the ACI440.1R-15, JSCE codes and existing literature for considering different performance parameters.

Evaluation of the geogrid-various sustainable geomaterials interaction by direct shear tests

  • Bahadir Ok;Huseyin Colakoglu;Umud Dagli
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.173-186
    • /
    • 2023
  • In order to prevent environmental pollution, initiatives to increase the sustainability of resources are supported by society. However, the performance of recycled materials does not generally match that of natural materials. This study looks into the use of geogrid to improve various types of recycled aggregates. For this purpose, five different recycled aggregates were created by recycling wastes from the construction industry. Besides, direct shear tests (DS tests) were carried out on these recycled aggregates to determine their shear strengths. Following that, a triaxial geogrid was placed in the recycled aggregates to provide reinforcement, and the DS tests were conducted on the reinforced recycled aggregates. The results of the tests were also compared to those of tests performed on natural aggregates (NA). In conclusion, it was found that the recycled aggregates have lower shear strengths than the NA. Nonetheless, when reinforced with geogrid, the shear strength of the recycled concrete aggregates (RCA) and construction and demolition wastes (CDW) exceeded that of the NA. Furthermore, the geogrid reinforcement increased the shear strength of the recycled crushed bricks (CB), though not to the level of the NA.

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

Steel Fibers Efficiency as Shear Reinforcement in Concrete Beams (섬유보강콘크리트 보의 전단거동에 미치는 강섬유의 효과)

  • 문제길;홍익표
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.118-128
    • /
    • 1994
  • There have been conducted a lot of works on shear behavior of steel fiber reinforced concrete beams. Fiber reinforced concrete beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 14 reinforced concrete beams (including 11 containing steel fibers) are reported. Two parameters were varied in the study, namely, the volume fraction of fibers and shear span-to-depth ratio.The effects of fiber incorporation on failure modes, deflections, cracking shear strength, and ul~imate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers, The mode of failure changed from shear to flexure when the shear span-to-depth ratio exceeds 3.4. Based on these investigations, a method of computing the shear strength of steel fiber reinforced concrete beam is suggested. The comparisons between computed values and expenmentally observed values are shown to verify the proposed theoretical treatment and steel fibers efficiency.

Shear Experiments on Concrete Filled PHC Pile with Composite Shear Connectors with Rebar Holes (보강 철근 정착 홀을 갖는 합성 전단연결재를 적용한 콘크리트 충전 PHC말뚝의 전단성능 평가)

  • Kim, Jeong-Hoi;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.259-266
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that reinforces shear force. CFP pile (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) developed in this study increases the shear stress by placing composite shear connector and filling the concrete into hollow part of the pile. By placing the reinforcement (H13-8ea) and the reinforcement (H19-8ea) into hollow section inside of PHC piles, it also improves the shear strength due to increasing steel ratio. It reinforces shear strength effectively by dowel force that is generated by putting reinforcement (H13-8) into the holes of composite shear connectors for the composite behavior of filled concrete and PHC pile. The study was reviewed and compared the calculated result of the shear strength by limit state design method highway bridge design standards (2012) and experiment result of the shear strength by KS F 4306. We can design the shear strength reasonably as the safety ratio of 2.20, 2.15, 2.05 is shown comparing to design shear strength, according to design shear strength on each cross sections and the experiment results of the CFP pile.

Lateral Resistance of Reinforced Light-Frame Wood Shear Walls

  • Hyung Woo LEE;Sang Sik JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.58-66
    • /
    • 2023
  • In light-frame timber construction, the shear wall is one of the most important components that provide resistance to lateral loads such as earthquakes or winds. According to KDS (Korea Design Standard) 42 50 10, shear walls are to be constructed using wood-based structural sheathing, with studs connected by 8d nails spaced 150 mm along the edge and 300 mm in the field. Even though small-scale residential timber building can be designed to exhibit seismic resistance using light-frame timber shear walls in accordance with KDS 42 50 10, only the abovementioned standard type of timber shear wall is available. Therefore, more types of timber shear walls composed of various materials should be tested to measure their seismic resistance, and the results should be incorporated into the future revision of KDS 42 50 10. In this study, the seismic resistance of shear walls composed of structural timber studs and wood-based structural sheathing with reinforced nailing is tested to evaluate the effects of the reinforcement. For the nailing reinforcement, shear wall specimens are constructed by applying nail spacings of 75-150 mm and 50-100 mm. For the shear wall specimens with one sheathing and reinforced nailing, the shear strengths are 1.7-2.0 times higher than that of the standard shear wall (nail spacing of 150-300 mm). The shear strength of the shear walls with sheathing on both sides is 2.0-2.7 times higher than that of the standard shear wall.

Failure Mechanism for Pull-Out Capacity of Headed Reinforcement (Head Reinforcement 인발강도를 위한 파괴 메캐니즘)

  • 홍성걸;최동욱;권순영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.233-238
    • /
    • 2002
  • This study presents failure mechanisms for the pull-out strength of headed reinforcement for upper bound solution based on the limit theorem. The failure mechanisms to be presented follow the failure surface pattern of punching shear failure found in the joints of slab with a column. Several failure surfaces of the mechanisms have different characteristics for dissipation works and these mechanisms are able to interpret the role of bar details surrounding headed reinforcement.

  • PDF

An Experimental Study on the Bond Splitting Behavior of R.C Beams using High-Strength Concrete (고강도콘크리트를 사용한 R.C 보 부재의 부착할렬성상에 관한 실험적 연구)

  • 곽노현;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.173-178
    • /
    • 1993
  • In order to quantify the effect of transverse reinforcement on the bond splitting behavior of reinforcement monotonic loading tests of 8 slmply beams were carried out. The reinforcing details and material properties were so determined that the bond splitting failure proceded the shear and flexural failure. A bond splitting strength derived from the experimental data and it accounts for following parameters: 1) Concrete Strength 2) Transverse reinforcement ratio and shape 3) Thickness of concrete cover 4)Deformation of reinforcement

  • PDF

Predicting Actual Strength of Shear Reinforcement Using Effective Stirrup Concept (유효 스터럽 개념을 이용한 전단보강근의 강도 예측)

  • Kwon, Ki-Yeon;Yang, Jun-Mo;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • This paper presents the prediction of the actual strength of shear reinforcement on the basis of the concept of effective stirrups. The prediction method incorporating the shear cracking angle was proposed with the estimation by the Modified Compression Field Theory (MCFT). To check the validity of the method, discussion of the current ACI 318-05 and comparison of 39 test results from the literature including author's retrospective test data were made. The influencing factors of compressive concrete strength and type of shear-reinforcement were also investigated. Furthermore, two full-scale beam specimens shear-reinforced with headed bars were tested to demonstrate the applicability of the proposed method.