• Title/Summary/Keyword: shear properties

Search Result 3,415, Processing Time 0.034 seconds

Mechanical Properties and Fabric Handle of Hansan Ramie (PartII) (한산모시의 역학적 특성 및 태에 관한 연구(제2보)-푸새효과에 대하여-)

  • 홍지명;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.862-871
    • /
    • 1998
  • In this study, the effect of sizing on the physical and mechanical characteristics of Hansan ramie was studied. 2 kinds of Hansan ramie were used for this study and one kind of the chinese ramie was also used for comparing with the characteristics of Hansan ramies. The following results were obtained from this experimental study. The wrinkle recovery angle was gradually reduced according to the increasing of the concentration of sizing agent. As the size agent could easily penetrate between the thick yarms, the effect of sizing on the wrinkle recovery angle was evident on the Chinese and Hansan coarse ramie. The result of KES-F system showed that the sizing affected much on the bending properties and shear properties. As the size concentration was increased the shear properties were increased more evidently on the Chinese and Hansan coarse ramie. The result of KES-F system showed that the sizing affected much on the bending properties and shear properties. As the size concentration was increased the shear properties were increased more evidently than the bending properties. The other mechanical properties didn't changed much by sizing. The calculated primary hand value also showed that the ramie became more stiff after sizing.

  • PDF

Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties

  • Mokhtar Ellali;Mokhtar Bouazza;Ashraf M. Zenkour
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.427-437
    • /
    • 2023
  • The objective of this work is to study the wave propagation of an FGM plate via a new integral inverse shear model with temperature-dependent material properties. In this contribution, a new model based on a high-order theory field of displacement is included by introducing indeterminate integral variables and inverse co-tangential functions for the presentation of shear stress. The temperature-dependent properties of the FGM plate are assumed mixture of metal and ceramic, and its properties change by the power functions of the thickness of the plate. By applying Hamilton's principle, general formulas of wave propagation were obtained to plot the phase velocity curves and wave modes of the FGM plate with simply supported edges. The effects of the temperature and volume fraction by distributions on wave propagation of the FGM plate are investigated in detail. The results of the dispersion and the phase velocity curves of the propagation wave in the functionally graded plate are compared with previous research.

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields (정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Kim, Yoon-Jeong;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.137-148
    • /
    • 2007
  • Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.

Evaluation of Early-age Properties of Controlled Low Strength Material Using Non-destructive Testing (비파괴 기법을 이용한 유동성 채움재의 초기경화특성 평가)

  • Kim, Dong-Ju;Kim, Sang-Cheol;Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.31-38
    • /
    • 2020
  • Controlled Low Strength Material (CLSM) has high fluidity and self-compaction characteristics. CLSM is mainly used for backfilling the excavated road. Early-age properties of CLSM should be characterized for fast restoration of the road. In this study, shear wave monitoring and Vicat needle test are performed to investigate the early-age properties of CLSM depending on the setting time. CLSM consists of CSA cement, fly ash, silt and sand, accelerator, and water. Five fly ashes with different chemical properties are used for CLSM samples. The penetration of CLSM along setting time is obtained through the Vicat needle test. A pair of bender elements are placed in a mold for shear wave measurement, and the change in shear waves with the setting time is monitored. The experimental results show that, regardless of the type of fly ash, the penetration depth decreases and the shear wave velocity increases with the setting time. Depending on the type of fly ash, initial and final times and shear wave velocity change. After testing, the correlation between penetration and shear wave velocity is obtained with high coefficient of determination. The shear wave measurement technique using the bender element can be used to identify early-age properties.

An experimental investigation on dynamic properties of various grouted sands

  • Hsiao, Darn-Horng;Phan, Vu To-Anh;Huang, Chi-Chang
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • Cyclic triaxial and resonant column tests were conducted to understand the beneficial effects of various grouted sands on liquefaction resistance and dynamic properties. The test procedures were performed on a variety of grouted sands, such as silicate-grouted sand, silicate-cement grouted sand and cement-grouted sand. For each type of grout, sand specimen was mixed with a 3.5% and 5% grout by volume. The specimens were tested at a curing age of 3, 7, 28 and 91 days, and the results of the cyclic stress ratio, the maximum shear modulus and the damping ratio were obtained during the testing program. The influence of important parameters, including the type of grout, grout content, shear strain, confining pressure, and curing age, were investigated. Results indicated that sodium silicate grout does not improve the liquefaction resistance and shear modulus; however, silicate-cement and cement grout remarkably increased the liquefaction resistance and shear modulus. Shear modulus decreased and damping ratio increased with an increase in the amplitude of shear strain. The effect of confining pressure on clean sand and sodium silicate grouted sand was found to be insignificant. Furthermore, a nonlinear regression analysis was used to prove the agreement of the shear modulus-shear strain relation presented by the hyperbolic law for different grouted sands, and the coefficients of determination, $R^2$, were nearly greater than 0.984.

Dynamic characteristics of combined isolation systems using rubber and wire isolators

  • Lee, Seung-Jae;Truong, Gia Toai;Lee, Ji-Eon;Park, Sang-Hyun;Choi, Kyoung-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1071-1084
    • /
    • 2022
  • The present study aims to investigate the dynamic properties of a novel isolation system composed of separate rubber and wire isolators. The testing program comprised pure compressive, pure-shear, compressive-stress dependence, and shear-strain dependence tests that used full-scale test specimens according to ISO 22762-1. A total of 22 test specimens were fabricated and investigated. Among the tests, the pure compressive test was a destructive test that reached up to the failure stage, whereas the others were nondestructive tests before the failure stage. Similar to the pure-shear test, at each compressive-stress level in the compressive dependence test or at each shear-strain level in the shear-strain dependence test, the cyclic loading was conducted for three cycles. In the nondestructive tests, examination of the dynamic shear properties in the X-direction was independent of the Y-direction. The test results revealed that the increase in the shear strain increased the energy dissipation but decreased the damping ratio, whereas the increase in the compressive stress increased the damping ratio. In addition, a macro model was developed to simulate the load-displacement response of the isolation systems, and the prediction results were consistent with the experimental results.

A Study on the Adhesive Properties of Lightweight Primary Mirror (대구경 주반사경의 접착 특성에 관한 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.796-801
    • /
    • 2007
  • The optical performance of the mirror for satellite camera is highly dependent on the adhesive properties between the mirror and its support. In order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this research, the mechanical properties of three kinds of space adhesives are studied. In case of the materials which show nearly incompressible behavior such as space adhesives, it is important to measure shear modulus which governs deviatoric stress components. Shear moduli of the adhesives are determined by using single lap adhesively bonded joint. For the shear tests, several points have been selected from $-20^{\circ}C$ to $50^{\circ}C$ which is operating temperature range of the adhesive. The shear modulus of each adhesive is expressed as a function of temperature. Characteristics of the adhesives are discussed regarding their temperature sensitivity. The analysis results of RMS wavefront error w.r.t shear modulus are presented.

  • PDF

Studies on the Flow Properties of Semi-Solid Dosage Forms (I) : Steady Shear Flow Behavior of Toothpastes (반고형제제의 유동특성에 관한 연구 (제1보) : 치약의 정상전단 유동거동)

  • Kim, Jeong-Hwa;Song, Ki-Won;Lee, Jang-Oo;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.213-221
    • /
    • 1995
  • The steady shear flow properties of six kinds of commercial toothpastes were measured using a concentric cylinder type rheometer. In this paper, the shear rate and temperature dependencies of their flow behavior were investigated and the validity of the Casson and Herschel-Bulkley models was examined. Further, the flow properties over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main results obtained from this study can be summarized as follows: (1) Toothpastes are plastic fluids with a yield stress and their flow behavior shows shear-thinning characteristics. (2) With increasing temperature, the degree of shear-thinning becomes weaker and the Newtonian flow behavior occurs at a lower shear rate range. (3) The Herschel-Bulkley model is more effective than the Casson model in predicting their flow behavior. (4) As the temperature increases, the yield stress, plastic viscosity and consistency index become smaller, on the contrary, the flow behavior index becomes larger.

  • PDF

Effects of changing materials properties for vibration of FGM beam using integral shear deformation model

  • Mokhtar Ellali;Mashhour A. Alazwari;Mokhtar Bouazza;Mohamed A. Eltaher;Noureddine Benseddiq
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.277-291
    • /
    • 2024
  • The objective of this work is to study the effects of the modification of material properties on the vibration of the FGM beam using an integral shear strain model. In the present theory, the rotational displacement is replaced by an integral term in the displacement fields. The use of a shear correction factor is not necessary because our model gives a parabolic description of shear stress through the thickness while satisfying the conditions of zero shear stresses on the bottom and top surfaces of the beam. The FGM beam is assumed that the beam is a mixture of metal and ceramic, and that its properties change depending on the power functions of the thickness of the beam such as: linear, quadratic, cubic and inverse quadratic. By applying Hamilton's principle, general formulas were obtained to obtain the frequencies of the FGM beam. The effects of changing compositional characteristics of materials presented by volume fraction of FGM beams with simply supported edges on free vibration and some mode shapes are investigated.

Estimation of Shear Strength and Rheological Parameters of Fine-Grained Soil Using Direct Shear Test (직접전단실험을 이용한 세립토의 전단강도 및 유변학적 정수 산정)

  • Park, Geun-Woo;Hong, Won-Taek;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.29-37
    • /
    • 2017
  • As the behavior of the debris flow due to the torrential rains in mountain is affected by shear strength and rheological properties of the fine fraction in the ground, the evaluation of both properties is necessary to estimate the behavior of the debris flow. The objective of this study is to evaluate the shear strength and rheological properties using the direct shear apparatus. The direct shear tests are conducted for two kinds of fine-grained soil specimens, which are in dry state and liquid limit state. From the direct shear tests, shear strengths are measured according to the normal stresses applied on the specimens to evaluate the cohesion and internal friction angle. In addition, reversal shear tests are performed for the fine-grained soil specimens in liquid limit state according to the shear rate to evaluate the residual shear strength. The results of direct shear tests show that the specimen at the liquid limit state has lower internal friction angle and higher cohesion compared to the dry stated, and the residual friction angle and cohesion at the residual state are lower than those at the peak state. In the result of reversal shear test, the residual shear strength is directly proportional to the shear rate and viscosity is calculated as $73.60Pa{\cdot}s$. This study demonstrates that the direct shear apparatus can be effectively used for the evaluation of the shear strength and rheological properties of the fine-grained soils related with the debris flow.