• Title/Summary/Keyword: shear parameter coefficient

Search Result 88, Processing Time 0.036 seconds

Probabilistic bearing capacity of circular footing on spatially variable undrained clay

  • Kouseya Choudhuri;Debarghya Chakraborty
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.93-106
    • /
    • 2024
  • The present paper investigates the spatial variability effect of soil property on the three-dimensional probabilistic characteristics of the bearing capacity factor (i.e., mean and coefficient of variation) of a circular footing resting on clayey soil where both mean and standard deviation of undrained shear strength increases with depth, keeping the coefficient of variation constant. The mean trend of undrained shear strength is defined by introducing the dimensionless strength gradient parameter. The finite difference method along with the random field and Monte Carlo simulation technique, is used to execute the numerical analyses. The lognormal distribution is chosen to generate random fields of the undrained shear strength. In the study, the potential failure of the structure is represented through the failure probability. The influences of different vertical scales of fluctuation, dimensionless strength gradient parameters, and coefficient of variation of undrained shear strength on the probabilistic characteristics of the bearing capacity factor and failure probability of the footing, along with the probability and cumulative density functions, are explored in this study. The variations of failure probability for different factors of safety corresponding to different parameters are also illustrated. The results are presented in non-dimensional form as they might be helpful to the practicing engineers dealing with this type of problem.

Estimate of Compressive Strength for Concrete using Ultrasonics by Multiple Regression Analysis Method (초음파를 이용한 중회귀분석법에 의한 콘크리트의 압축강도추정)

  • Park, I.G.;Han, E.K.;Kim, W.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.2
    • /
    • pp.22-31
    • /
    • 1991
  • Various types of ultrasonic techniques have been used for the estimation of compressive strength of concrete structures. However, conventional ultrasonic velocity method using only longitudial wave cannot be determined the compressive strength of concrete structures with accuracy. In this paper, by using the introduction of multiple parameter, e. g. velocity of shear wave, velocity of longitudinal wave, attenuation coefficient of shear wave, attenuation coefficient of longitudinal wave, combination condition, age and preservation method, multiple regression analysis method was applied to the determination of compressive strength of concrete structures. The experimental results show that velocity of shear wave can be estimated compressive strength of concrete with more accuracy compared with the velocity of longitudinal wave, accuracy of estimated error range of compressive strength of concrete structures can be enhanced within the range of ${\pm}$10% approximately.

  • PDF

Analysis of the Frictional Behavior of Rubber Block (고무 블록의 마찰 거동 해석)

  • Kim, Doo-Man;Yoo, Hyun-Seung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2006
  • The friction and wear of tire determined by frictional behavior of tire tread that translate driving force, cornering force and braking force between automobile and road as a result of frictional behavior of each tread block. The tire tread block is representative case of rubber block doing frictional behavior. In this paper, frictional behavior of rubber block under compressive force and shear force was analytically obtained by using slip starting position parameter instead of friction coefficient which is uncertain to express exact value between rubber and other surfaces yet. And local coefficients of friction were calculated as a function of compressive force, shear force, shear modulus of rubber, shape factor and slip starting position.

  • PDF

Shear Design of Trapezoidally Corrugated Steel Webs (제형 파형강판 복부판의 전단 설계)

  • Moon, Jiho;Yi, Jongwon;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.497-505
    • /
    • 2008
  • Corrugated steel webs resist only shear force because of the accordion effects. The shear force in the web can cause three different buckling mode: local, global, and interactive shear buckling modes. The shear behavior of the corrugated steel webs have been investigated by several researchers. However, shear buckling behavior of the corrugated webs are not clearly explained yet. And, it lead the conservative design. This paper presents shear strength of trapezoidally corrugated steel webs. A series of the tests were also conducted to verified proposed shear strength. Firstly, local, global, and interactive shear buckling equations provided by previous researchers were rearranged as a simple form considering the profiles of the existing bridges with corrugated steel webs. And, global and interactive shear buckling coefficient, and shear buckling parameter for corrugated webs were suggested in this study. Inelastic buckling strength can be determined from buckling curves based on the proposed shear buckling parameter. From the test results of this study and those of previous researchers, it can be found that suggested shear strength provides good estimation of those of trapezoidally corrugated steel webs.

Effect of Geometrical Parameters on Spray Characteristics of Shear/Swirl Coaxial Injector (전단/와류동축 분사기의 형상학적 변수에 따른 분무특성 영향)

  • Cheolwoong Kang;Shinwoo Lee;Hadong Jung;Kyubok Ahn
    • Journal of ILASS-Korea
    • /
    • v.29 no.3
    • /
    • pp.112-123
    • /
    • 2024
  • In this study, a cold-flow test was conducted under ambient conditions to investigate the impact of key geometrical parameters on the spray characteristics of coaxial injectors. Two types of injectors were examined: shear coaxial and swirl coaxial. The primary geometrical variables considered were the recess length and taper angle. The effects of each geometric parameter on the pressure drop, discharge coefficient, breakup length, and spray angle were analyzed. In the swirl coaxial injector, the recess length and the presence of taper affected the discharge coefficient more than in the shear coaxial injector. In terms of breakup length and spray angle, the shear coaxial injector and the swirl coaxial injector showed different results, due to the combination of the jet or swirl injection of the oxidizer and the geometrical variables of the injector. The breakup length and spray angle of the swirl coaxial injector were superior to those of the shear coaxial injector. It is expected that the swirl coaxial injector will have better combustion performance in hot-firing tests.

NONPOTENTIAL PARAMETERS OF SOLAR ACTIVE REGION AR 5747

  • MOON Y.-J.;YUN H. S.;CHOE GWANGSON;PARK Y. D.;MICKEY D. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • Nonpotential characteristics of magnetic fields in AR 5747 are examined using Mees Solar Observatory magnetograms taken on Oct. 20, 1989 to Oct. 22, 1989. The active region showed such violent flaring activities during the observational span that strong X-ray flares took place including a 2B/X3 flare. The magnetogram data were obtained by the Haleakala Stokes Polarimeter which provides simultaneous Stokes profiles of the Fe I doublet 6301.5 and 6302.5. A nonlinear least square method was adopted to derive the magnetic field vectors from the observed Stokes profiles and a multi-step ambiguity solution method was employed to resolve the $180^{\circ}$ ambiguity. From the ambiguity-resolved vector magnetograms, we have derived a set of physical quantities characterizing the field configuration, which are magnetic flux, vertical current density, magnetic shear angle, angular shear, magnetic free energy density, a measure of magnetic field discontinuity MAD and linear force-free coefficient. Our results show that (1) magnetic nonpotentiality is concentrated near the inversion line in the flaring sites, (2) all the physical parameters decreased with time, which may imply that the active region was in a relaxation stage of its evolution, (3) 2-D MAD has similar patterns with other nonpotential parameters, demonstrating that it can be utilized as an useful parameter of flare producing active region, and (4) the linear force-free coefficient could be a evolutionary indicator with a merit as a global nonpotential parameter.

  • PDF

A New Coefficient for Three Dimensional Quantification of Rock Joint Roughness (암석 절리면 거칠기의 새로운 3차원 정량화 계수)

  • Park, Jung-Wook;Lee, Yong-Ki;Song, Jae-Joon;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.106-119
    • /
    • 2012
  • Roughness of rock joint has generally been characterized based upon geometrical aspects of a two-dimensional surface profile. The appropriate description of joint roughness, however, should consider the features of roughness mobilization at contact areas under normal and shear loads. In this study, direct shear tests were conducted on the replicas of tensile fractured gneiss joints and the influence of the shear direction on the shear behavior and effective roughness was examined. In this procedure, a joint surface was represented as a group of triangular planes, and the steepness of each plane was characterized using the concepts of the active and inactive micro-slope angles. The contact areas at peak strength which were estimated by a numerical method showed that the locations of the contact areas were mainly dependent on the distribution of the micro-slope angle and the shear behavior of joint was dominated by only the fractions with active micro-slope angles. Therefore, a three-dimensional coefficient for the quantification of rock joint roughness is proposed based on the distribution of active micro-slope angle: active roughness coefficient, $C_r$. Comparison of the active roughness coefficient and the peak shear strength obtained from the experiment suggests that the active roughness coefficient is the effective parameter to quantify the surface roughness and estimate the shear behavior of rock joint.

Statistical Analysis of Interfacial Shear Strength on Fiber-Matrix (섬유-Matrix의 계면전단강도에 관한 통계적고찰)

  • 문창권;남기우;엄윤성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.200-206
    • /
    • 1992
  • The effect of fiber diameter and gauge length on pull-out test for the interfacial properties in fiber reinforced resin composites have been investigated and these results have been arranged as statistical analysis. The fiber and matrix resins used for this study were stainless steel fiber (SUS316) and carbon fiber (high strength type), epoxy and high density polyethylene resin. From this study, it has been found that shear strength are constant regardless of gauge length of pull-out test and coefficient of variation depend on fiber diameter. In addition, it has been found that the interfacial shear strength decreased with the increasing fiber diameter, and in all case, Weibull parameter (m) has approximately 1.2/C.O.V.

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.

Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model

  • Bellal, Moussa;Hebali, Habib;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bourada, Fouad;Mahmoud, S.R.;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.643-655
    • /
    • 2020
  • In the present work, the buckling behavior of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is studied using nonlocal four-unknown integral model. This model has a displacement field with integral terms which includes the effect of transverse shear deformation without using shear correction factors. The visco-Pasternak's medium is introduced by considering the damping effect to the classical foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The SLGS under consideration is subjected to compressive in- plane edge loads per unit length. The influences of many parameters such as nonlocal parameter, geometric ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the buckling response of the SLGSs are studied and discussed.