• Title/Summary/Keyword: shear modulus of elasticity

Search Result 100, Processing Time 0.023 seconds

Estimating properties of reactive powder concrete containing hybrid fibers using UPV

  • Nematzadeh, Mahdi;Poorhosein, Reza
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.491-502
    • /
    • 2017
  • In this research, the application of ultrasonic pulse velocity (UPV) test as a nondestructive method for estimating some of the mechanical and dynamic properties of reactive powder concrete (RPC) containing steel and polyvinyl alcohol (PVA) fibers, as well as their combination was explored. In doing so, ten different mix designs were prepared in 19 experimental groups of specimens containing three different volume contents of steel fibers (i.e., 1, 2, and 3 %) and PVA fibers (i.e., 0.25, 0.5, and 0.75 %), as well as hybrid fibers (i.e., 0.25-0.75, 0.5-0.5, and 0.75-0.25 %). The specimens in these groups were prepared under the two curing regimes of normal and heat treatment. Moreover, the UPV test results were employed to estimate the compressive strength, dynamic modulus, shear modulus, and Poisson's ratio of the RPC concrete and to investigate the quality level of the used concrete. At the end, the effect of the specimen shape and in fact the measuring distance length on the UPV results was explored. The results of this research suggest that the steel fiber-containing RPC specimens demonstrate the highest level of ultrasonic pulse velocity as well as the highest values of the mechanical and dynamic properties. Moreover, heat treatment has a positive effect on the density, UPV, dynamic modulus, Poisson's ratio, and compressive strength of the RPC specimens, whereas it leads to a negligible increase or decrease in the shear modulus and static modulus of elasticity. Furthermore, the specimen shape affects the UPV of fiber-lacking specimens while negligibly affecting that of fiber-reinforced specimens.

Time-Dependent Behavior of Prestressed Concrete Bridges Constructed by the Segmental Cantilever Method (캔틸레버 시공법에 의한 프리스트레스트 콘크리트 교량의 장기 거동 해석)

  • 오병환;최계식;이상희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.73-76
    • /
    • 1989
  • A numerical procedure is developed to analyze the time-dependent behavior of prestressed concrete bridges constructed by the segmental cantilever method. The developed computer program accounts for the time-dependent properties of prestressed concrete materials due to the varing modulus of elasticity, creep and shrinkage of concrete and the stress relaxation of prestressing steel. It also accounts for the stiffness increase due to the presence of the steel reinforcements and the effects of the shear deformation of the prestressed concrete bridge girders. The program is applied to a multi-span continuous segmental prestressed concrete bridge to demonstrate its capabilities.

  • PDF

Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis

  • Majeed, Samadar S.;Haido, James H.;Atrushi, Dawood Sulaiman;Al-Kamaki, Yaman;Dinkha, Youkhanna Zayia;Saadullah, Shireen T.;Tayeh, Bassam A.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.451-463
    • /
    • 2021
  • Inorganic basalt fiber (BF) is a novel sort of commercial concrete fiber which is made with basalt rocks. Previous studies have not sufficiently handled the behavior of self-compacted concrete, at elevated temperature, containing basalt fiber. Present endeavor covers experimental work to examine the characteristics of this material at high temperature considering different fiber content and applied temperature. Different tests were carried out to measure the mechanical properties such as compressive strength (fc), modulus of elasticity (E), Poisson's ratio, splitting tensile strength (fsplit), flexural strength (fflex), and slant shear strength (fslant) of HSC and hybrid concrete. Gene expression programming (GEP) was employed to propose new constitutive relationships depending on experimental data. It was noticed from the testing records that there is no remarkable effect of BF on the Poisson's ratio and modulus of elasticity of self-compacted concrete. The flexural strength of basalt fiber self-compacted concrete was not sensitive to temperature in comparison to other mechanical properties of concrete. Fiber volume fraction of 0.25% was found to be the optimum to some extend according to degradation of strength. The proposed GEP models were in good matching with the experimental results.

고무의 전단 탄성을 이용한 방진마운트 개발

  • 윤승원;이성춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.782-787
    • /
    • 1995
  • Rubber isolator has many advantages compared with steel spring mount. Rubber has high internal damping and can be formed various shape depending on specific purpose. On the contrary, low modulus of elasticity of rubber results the instability of rubber isolator by buckling phenomenon. This paper presents the development of shear type rubber isolator for industrial application by using shear rigidity property of rubber. The static load-deflection characteristics of developed isolator has been analyzed by the FEM. Consequently, the static load testing and a measure of the effectiveness of a vibration isolator in terms of force transissibility for developed isolator have been carried out.

  • PDF

Design models for predicting shear resistance of studs in solid concrete slabs based on symbolic regression with genetic programming

  • Degtyarev, Vitaliy V.;Hicks, Stephen J.;Hajjar, Jerome F.
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.293-309
    • /
    • 2022
  • Accurate design models for predicting the shear resistance of headed studs in solid concrete slabs are essential for obtaining economical and safe steel-concrete composite structures. In this study, symbolic regression with genetic programming (GPSR) was applied to experimental data to formulate new descriptive equations for predicting the shear resistance of studs in solid slabs using both normal and lightweight concrete. The obtained GPSR-based nominal resistance equations demonstrated good agreement with the test results. The equations indicate that the stud shear resistance is insensitive to the secant modulus of elasticity of concrete, which has been included in many international standards following the pioneering work of Ollgaard et al. In contrast, it increases when the stud height-to-diameter ratio increases, which is not reflected by the design models in the current international standards. The nominal resistance equations were subsequently refined for use in design from reliability analyses to ensure that the target reliability index required by the Eurocodes was achieved. Resistance factors for the developed equations were also determined following US design practice. The stud shear resistance predicted by the proposed models was compared with the predictions from 13 existing models. The accuracy of the developed models exceeds the accuracy of the existing equations. The proposed models produce predictions that can be used with confidence in design, while providing significantly higher stud resistances for certain combinations of variables than those computed with the existing equations given by many standards.

Effects of ${\beta}$-Conglycinin and Glycinin on Thermal Gelation and Gel Properties of Soy Protein

  • Kang, Il-Jun;Lee, Young-Sook
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • Dynamic shear moduli of isolated soy protein solutions upon heating were measured to monitor gelation. Onsets of gelation coincide with onset temperatures of denaturation in glycinin and ${\beta}$-conglycinin solutions, whereas in isolated soy proteins, onset of gelation was above denaturation temperature of ${\beta}$-conglycinin with storage modulus increasing in two steps. The first increase in storage modulus of isolated soy proteins occurred at about $78.5^{\circ}C$, while the second increase started at about $93^{\circ}C$. Gel properties of soy protein gels having different proportions of glycinin and ${\beta}$-conglycinin were measured by compression-decompression test. ${\beta}$-conglycinin was responsible for gel elasticity. Glycinin significantly increased hardness, toughness, and fracturability of gels at high heating temperature near $100^{\circ}C$. Results reveal texture of soy protein gels can be controlled by regulating ratio of glycinin to ${\beta}$-conglycinin and heating temperature.

A simple plane-strain solution for functionally graded multilayered isotropic cylinders

  • Pan, E.;Roy, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.727-740
    • /
    • 2006
  • A simple plane-strain solution is derived in this paper for the functionally graded multilayered isotropic elastic cylinder under static deformation. The solution is obtained using method of separation of variables and is expressed in terms of the summation of the Fourier series in the circumferential direction. While the solution for order n = 0 corresponds to the axisymmetric deformation, that for n = 2 includes the special deformation frequently utilized in the upper and lower bounds analysis. Numerical results for a three-phase cylinder with a middle functionally graded layer are presented for both axisymmetric (n = 0) and general (n = 2) deformations, under either the traction or displacement boundary conditions on the surface of the layered cylinder. The solution to the general deformation case (n = 2) is further utilized for the first time to find the upper and lower bounds of the effective shear modulus of the layered cylinder with a functionally graded middle layer. These results could be useful in the future study of cylindrical composites where FGMs and/or multilayers are involved.

Examination of contact problem between functionally graded punch and functionally graded layer resting on elastic plane

  • Polat, Alper
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • In this study, continuous contact problem in the functionally graded (FG) layer loaded with a FG flat punch resting on the elastic semi-infinite plane was analyzed by the finite element method (FEM). It was assumed that the shear modulus and density of the layer and punch varied according to exponentially throughout their depth. FG layer's weight was included to the problem and additionally all surfaces were considered as frictionless. Analysis of FG materials was performed with a special macro which was added to the ANSYS program. Firstly, the shear modulus of the punch was considered to be very rigid and the results of initial separation load (λcr) and distance (xcr) were compared with the analytical solution. Afterwards, results obtained from the contact analysis made according to the inhomogeneity parameters (β, γ) between FG punch-FG layer which had been unprecedented in the literature were discussed. As a result, FG punch's stress values at the punch edges where stress accumulations occurred were found to be smaller than the rigid punch. The security of the structure, longer life of the material and ease of production are directly related to the reduction of the stress values. The results obtained in this study are important in this respect. Also this work is the first study that investigates the effect of FG punch on the FG layer.

Characteristics of Undrained Shear Behavior for Nak-Dong River Sand Due to Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 전단거동 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.916-923
    • /
    • 2005
  • In this study, to observe aging effect of undrained shear behavior for Nak-Dong River sand, undrained static and cyclic triaxial tests were performed with changing relative density ($D_r$), consolidation stress ratio($K_c$) and consolidation time. As a result of the test, the modulus of elasticity to all samples estimated within elastic zone by the micro strain of about 0.05% in case of static shear behavior increased with the lapse of consolidation time significantly, so aging effect was shown largely. Also strength of phase transformation point(S_{PT}$) and strength of critical stress ratio point($S_{CSR}$) increased with the lapse of consolidation time. Undrained cyclic shear strength($R_f$) obtained from the failure strain 5% increased in proportion to relative density($D_r$) and initial static shear stress($q_{st}$), $R_f$ of consolidated sample for 1,000 minutes increased about 10.6% compared to that for 10 minutes at the loose sand, and $R_f$ increased about 7.0% at the medium sand. In situ application range of $R_f$ to the magnitude of earthquake for Nak-Dong River sand was proposed by using a increasing rate of $R_f$ as being aging effect shown from this test result.

  • PDF

The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

  • Lingqin Xia;Ruiquan Wang;Guang Chen;Kamran Asemi;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.