• Title/Summary/Keyword: shear modulus of elasticity

Search Result 100, Processing Time 0.024 seconds

A Experimental Study on Application of KS F 2456 using Shear Wave (급속 동결 융해에 대한 콘크리트의 저항 시험방법(KS F 2456)에 전단파 적용을 위한 실험적 연구)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.57-65
    • /
    • 2012
  • PURPOSES: It is important to consider the long-term performance of concrete pavement, because concrete pavement is more exposed to the various environmental conditions than any other concrete structures. One of the several methods to evaluate the long-term performance of concrete during winter is KS F 2456. Relative dynamic modulus of elasticity shows the resistance to freezing and thawing. METHODS: To measure relative dynamic modulus of elasticity, ultra sonic is generally used. But in this study, to measure the relative dynamic modulus of elasticity, both ultra sonic and shear wave were used and then compared each other. RESULTS: The results from the measurement by ultrasonic wave and shear wave were divided into three types. Type 1 : Specimens are good and relative dynamic modulus of elasticity did not decrease until 300 cycle. Type 2 : The relative dynamic modulus of elasticity decreased from the late cycle.(about 150 cycle later) Type 3 : The relative dynamic modulus of elasticity consistently decreased from the beginning. As a result of ANOVA, there is no difference according to measuring method, in type 2 and 3. But there is a difference according to measuring method, in type 1's relative dynamic modulus of elasticity. CONCLUSIONS: It is proved that shear wave can be used to understand the damage tendency of relative freezing and thawing and to measure the relative dynamic modulus of elasticity.

Shear Strength Evaluation in Masonry Assemblages by Reinforcing Materials in Joint (줄눈 보강을 통한 면내 방향의 조적조 사인장 전단강도 평가)

  • Woo, Jong-Hun;Shin, Kyung-Jae;Lee, Jun-Seop;Han, Seung-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.191-198
    • /
    • 2019
  • All over the Republic of Korea, there are many masonry buildings which have been built since 1970s. When the earthquake at Po-Hang occurred, this is the main cause of huge damage because the masonry buildings have not seismic capacity. When masonry buildings are failed, two type of the failure modes can be shown, which are in-plane mode and out-plane mode. In-plane mode can have seismic capacity in masonry so diagonal shear test is performed in this study. The purpose of this study was to find the best way to reinforce the materials through the diagonal shear test. Through the test, shear stress and shear modulus of elasticity will be calculated, referred to the ASTM E 519-02. The variables in this test are ${\phi}3$ wire, three types of wire meshes, polypropylene strap and different types of brick. Each variable is applied to the same condition of the $1.2m{\times}1.2m$ masonry walls which are made by ASTM E 519-02. Compared to each variable with shear stress and shear modulus of elasticity, the best way of reinforcing method to have seismic capacity will be proved in this study.

Investigation of masonry elasticity and shear moduli using finite element micro-models

  • Mavrouli, O.A.;Syrmakezis, C.A.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.171-182
    • /
    • 2008
  • In this paper, a methodology for the estimation of masonry elasticity and shear moduli is presented, for linear elasticity considerations. The methodology is based on the assumption that for a "periodic" masonry wall, which is formed by the repetition of a basic unit containing blocks and mortar, the mechanical characteristics of the unit are representative of the characteristics of the entire wall. For their calculation, the finite element analysis method is used. A micro-model with finite elements simulating separately the blocks and the mortar is developed. An equivalent finite element model, using an homogenous material is also developed and assuming equivalence of strains for the two models, the homogenous material properties are estimated. The efficiency of the method and its applicability limits are investigated.

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

Study on the Mechanical Properties of Tropical Hybrid Cross Laminated Timber Using Bamboo Laminated Board as Core Layer

  • GALIH, Nurdiansyah Muhammad;YANG, Seung Min;YU, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • This study was performed to analyze the mechanical properties of tropical hybrid cross-laminated timber (CLT) with bamboo laminated board as the core layer in order to evaluate the possibility of its use as a CLT material. Bamboo board was used as the core layer and the tropical species Acacia mangium willd., from Indonesia, was used as the lamination in the outer layer. The modulus of elasticity (MOE), modulus of rupture (MOR), and shear strength of the hybrid CLT were measured according to APA PRG 320-2018 Standard for Performance-Rated Cross-Laminated Timber. The results show that the bending MOE of the hybrid CLT was found to be 2.76 times higher than SPF (Spruce Pine Fir) CLT. The reason why the high MOE value was shown in bamboo board and hybrid CLT applied bamboo board is because of high elasticity of bamboo fiber. However, the shear strength of the hybrid CLT was 0.8 times lower than shear strength of SPF CLT.

Evaluation of Exterior Durability of Domestic Plywood for Temporary Construction (국산(國産) 가설재용(假說材用) 합판(合板)의 옥외(屋外) 내구성(耐久性) 평가(評價))

  • Kim, Gyu-Hyeok;Jo, Jae-Sung;Song, Ki-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.20-27
    • /
    • 1994
  • Water repellent preservative (WRP) treated and untreated, small-sized specimens prepared from semiwater resistant, water resistant, and tegofilm-overlaid plywood were exposed to outdoor weathering for one year. Exterior durability of specimens was evaluated on the basis of changes in dynamic modulus of elasticity, degree of delamination, modulus of elasticity, modulus of rupture, and glueline shear strength. Among untreated specimens, tegofilm-overlaid plywood showed the best outdoor durability, and durability between semiwater resistant and water resistant plywood was similar. Although WRP treatment increased the durability of all types of plywoods, the effect of treatment on the increase in durability for semi water resistant plywood was not distinct. Accordingly, it can be concluded that semi water resistant plywood, which is used for temporary construction such as concrete formwork in our country, can not be inadequate for exterior use, regardless of WRP treatment. The bending strength and glueline shear strength of untreated water resistant plywood measured after weathering for one year did not exceed the minimum value specified by Korean Standard (KS), thereby the outdoor use of water resistant plywood was not desirable without WRP treatment. Exterior durability between treated water resistant plywood and untreated tegofilm-overlaid plywood was very similar. This result suggests that if an exposed plywood surface is treated with WRP regularly water resistant plywood can be used for temporary construction. This suggestion, however, needs to be investigated. In summary, semiwater resistant plywood cannot be used for temporay construction regardless of WRP treatment. Water resistant plywood can be used only with WRP treatment. Comparing the cost of tegofilm-overlaid plywood to costs of water resistant plywood and WRP treatment, however, it can be concluded that use of tegofilm-overlaid plywood for temporay constrution is strongly suggested from the point of view of both outdoor durability and costs.

  • PDF

Characterization of the mixed soil with waste and application to geotechnical field (폐기물을 포함한 혼합토의 특성 및 지반공학분야에의 응용)

  • 이기호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.72-84
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, we investigate the shear characteristics of dredged sluge mixed with oyster shells. the apparent modulus of elasticity of the this mixture are obtained from the triaxial compression tests and is utilized to characterize the apparent modulus of elastic of the oyster shells by carrying out some numerical analysis based upon the homogenization theory. We got the conclusion by a series of experiment, 1) It is verified that modulus of elasticity of dredged clay is improved by mixing with oyster shells. 2) The homogenization method for deducing apparent modulus of elasticity of oyster shells, which can consider micro-structure of mixed soil, is introduced. The elastic modulus is affected from the skeleton structure of oyster shell. The effect of 49kPa is bigger than that of 98kPa.

  • PDF

Measurement Method of Complex Dynamic Viscoelastic Material Properties (점탄성 재료의 복소수 동특성 측정방법)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.489-495
    • /
    • 2009
  • A novel technique to measuret of viscoelastic properties of polymers is proposed to investigate complex Poisson's ratio as a function of frequency. The forced vibration responses for the samples under the normal and the shear deformation are to be measured with varying load masses. The measured data were used to obtain the viscoelastic properties of the material based on an accurate 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Comprehensive measurements of viscoelastic properties of two slightly varied silicone RTV rubber ($Silastic^{(R)}$ S2) compositions were performed. Standard composition (90% PDMS polymer + 10% catalyst) and modified composition (92.5% polymer + 7.5% catalyst) were tested in temperature range from $30^{\circ}C$ to $70^{\circ}C$. Shear modulus, modulus of elasticity, loss factor, and both the real and the imaginary parts of the Poisson's ratio were determined for frequencies from 50 to 400Hz in the linear deformation regime (at relative deformations $10^{-4}{\sim}10^{-3}$).

Mechanical Characteristics of Garlic Scapes for Developing Mechanical Garlic Bulbils Harvester (마늘 주아 수확기 개발을 위한 마늘종의 역학적 특성 분석)

  • So J. D.;Kim G. H.;Kwon S. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.75-80
    • /
    • 2005
  • Mechanical characteristics of flower stalks (scapes) of garlic such as shear forces, cutting forces, and modulus of elasticities were investigated as a preliminary research to develop a mechanical harvester of garlic bulbils. The average shear forces of garlic scapes was 0.642 N and the maximum and minimum shear forces were 1.42 and 0.25 N, respectively. The shear forces generally increased as the diameter of garlic scapes increased. There was no correlation between the modulus of elasticity and the diameter of garlic scapes and the average modulus of elasticity of garlic scapes was around $2.40\times10^7\;N/m^2$ There was also no correlation between the cutting force and the diameter of garlic scapes. As the downward speed of blade increased, the cutting force of garlic scapes decreased and reversed to increase. The cutting forces of the lower part garlic scapes were lower than those of the upper part. The range of cutting forces of the lower and the upper part of garlic scapes were 3.88-4.04 N and 4.29-4.93 N, respectively.

Viscoelastic behavior on composite beam using nonlinear creep model

  • Jung, Sung-Yeop;Kim, Nam-Il;Shin, Dong Ku
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.355-376
    • /
    • 2007
  • The purpose of this study is to predict and investigate the time-dependent creep behavior of composite materials. For this, firstly the evaluation method for the modulus of elasticity of whole fiber and matrix is presented from the limited information on fiber volume fraction using the singular value decomposition method. Then, the effects of fiber volume fraction on modulus of elasticity of GFRP are verified. Also, as a creep model, the nonlinear curve fitting method based on the Marquardt algorithm is proposed. Using the existing Findley's power creep model and the proposed creep model, the effect of fiber volume fraction on the nonlinear creep behavior of composite materials is verified. Then, for the time-dependent analysis of a composite material subjected to uniaxial tension and simple shear loadings, a user-provided subroutine UMAT is developed to run within ABAQUS. Finally, the creep behavior of center loaded beam structure is investigated using the Hermitian beam elements with shear deformation effect and with time-dependent elastic and shear moduli.