• Title/Summary/Keyword: shear layer

Search Result 1,344, Processing Time 0.031 seconds

A Study on Strength Characteristics of Sand-gravel Mixtures (모래-자갈 혼합토의 강도 특성에 관한 연구)

  • Park, Sung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.13-19
    • /
    • 2011
  • The strength of granular mixtures can be controlled by the majority of the mixture, fine grains. However, in some cases, the small amount of gravel in the mixture may influence the strength of the mixture. In this study, the effect of some dispersed gravels on strength of sand is evaluated. Gravels are embedded in the middle of each cemented sand layer. The size and number of embedded gravels varies. After two days curing, a series of unconfined compression tests is performed on the cemented sand with dispersed gravels. In addition to that, a series of direct shear tests is also carried out on clean sand with gravels to evaluate its friction angle. For the specimens with the same ratio of gravel weight of 7% in which gravel size and number are different, an unconfined compressive strength(UCS) of a specimen with gravels decreases up to 15% compared to a specimen without gravel and then increases with increasing gravel number. For specimens embedded with the same size of gravel, UCS decreases and then increases as a number of gravel increases. As a number of gravel increases, a friction angle of clean sand with gravels decreases up to $5^{\circ}$ and then recovers up to that of a specimen without gravel.

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.

S-Wave Velocities Beneath Jeju Island, Korea, Using Inversion of Receiver Functions and the H-κ Stacking Method (수신함수 역산 및 H-κ 중합법을 이용한 제주도 하부의 S파 지각 속도)

  • Jeon, Taehyeon;Kim, Ki Young;Woo, Namchul
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2013
  • Shear-wave velocity ($v_s$) structures beneath two seismic stations, JJU and JJB on the flanks of the volcano Halla on Jeju island, Korea, were estimated by receiver-function inversion and H-${\kappa}$ stacking applied to 150 teleseismic events ($M_W{\geq}5.5$) recorded since 2007. $P_S$ waves converted at the Moho discontinuity does not appear clearly for northwesterly back-azimuths ($207{\sim}409^{\circ}$, average $308^{\circ}$) at station JJU and southeasterly back-azimuths ($119{\sim}207^{\circ}C$, average $163^{\circ}$) at station JJB. This may be due to a gradual velocity increase at Moho or heterogeneity within the crust. The $v_s$ models derived by inversion of receiver functions indicate a distinct low velocity layer ($v_s{\leq}3.5km/s$; LVL) within the crust and a gradual increase in $v_s$ in the depth interval of 30 to 40 km. Within the radius of 18 km beneath station JJB, the LVL occurs at depths of 14 ~ 26 km and the 'Moho' ($v_s{\geq}4.3km/s$) is at 34 km depth. Ten kilometers to the west, within the radius of 16 km beneath station JJU, both the LVL and the Moho are significantly shallower, at depths of 14 to 24 km and 30 km, respectively. H-${\kappa}$ analyses for stations JJU and JJB yield estimated crustal thickness of 29 and 33 km and $v_p/v_s$ ratios of 1.64 and 1.75, respectively. The lesser $v_p/v_s$ ratio was derived for rocks nearest to th peak of the volcano.

Effect of Cooking Methods with Various Heating Apparatus on the Quality Characteristics of Pork (가열기구에 따른 조리방법이 돼지고기의 품질특성에 미치는 영향)

  • Jeon, Ki-Hong;Kwon, Ki-Hyun;Kim, Eun-Mi;Kim, Young-Boong;Choi, Yun-Sang;Sohn, Dong-In;Choi, Jin-Young
    • Culinary science and hospitality research
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Pork belly(PB) and pork shoulder(PS) parts were tested to find out chemical and physical characteristics and sensory evaluation with various cooking methods such as pan heating, boiling, grilling, steaming, charcoal heating, pan heating and double-layer pan filled with phase change material (PCM) cooking. The moisture contents of steamed PB and PS had higher results of 60.2% and 67.2% than other treatments. The highest results of crude fat contents in PB treatments was charcoal roasting as 33.2% (p<0.05) while grilling resulted the highest at 16.0% in the PS (p<0.05). In the crude protein contents, boiling treatment resulted the lowest at 15.4% while steaming was the highest at 18.9% in PB. Also, crude protein content of grilling treatment was 25.2%, a result significantly higher than in other cooking methods in PS. Heating loss, which has a close relationship with water holding capacity, showed the highest result in the charcoal treatment at 40.18% and 39.68% each in the both of PS and PS. In the result of shear force, the lowest result was oven treatment at $2.76kg/cm^2$ in PB (p<0.05) and double-layer pan heating at $3.67kg/cm^2$ in PS (p<0.05). L value in the color test of boiling treatment showed the highest result of 65.16 and 59.72 in the PB and PS respectively (p<0.05), however it scored the lowest of 2.32 in b value in PB (p<0.05). In the 9 point-scale sensory evaluation, grilling treatment showed the highest result of 7.56 in the overall palatability of PB (p<0.05). However, PS in the pan heating which scored 7.22 was the best result while having the lowest score of 5.88 in the boiling treatment (p<0.05).

Soil Characteristics according to the Geological Condition of Soil Slopes in Landslide Area (산사태지역 토층사면의 지질조건별 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.359-371
    • /
    • 2006
  • In this study, the soil characteristics are analyzed using the result of various soil tests as an object of the soil layer of natural slopes in landslides areas composed with gneiss, granite, and the tertiary sedimentary rock. To investigate the soil characteristics according to landslide and non landslide areas, soils are sampled from Jangheung, Sangju and Pohang. The landslides at three areas are occurred due to heavy rainfall in same time. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. On the basis of the landslide data and the result of soil test, the soil characteristics at the landslide area and the differentiation between landslide area and non landslide area are analyzed. However soil characteristics have a little differentiation to geological condition, the uniformity coefficient and the coefficient of gradation of soils at the landslide area is larger than those of soils at the non landslide area. Also, the proportion of fine particle of soils at the landslide area is higher. The plastic limit of soils sampled from the granite and the sedimentary rock regions is larger than that sampled from the gneiss region. However the liquid limit is irrelevant to the geological condition. Also, the consistency of soils at the landslide area is smaller. The natural moisture content of soils in the sedimentary rock regions is larger than that of the granite and gneiss. It is mainly influenced by mineral composition, soil layer structure, weathering condition, and so on. The soils sampled from landslide area have higher porosity and lower density than those from non landslide area. It means that the soils of landslide area have poor particle size distribution and loose density. Therefore, the terrain slope with poor distribution and loose density is vulnerable to occur in landslides. Also, landslides are occurred in the terrain slope with high permeability. The permeability is mainly influenced by the soil characteristics such as particle size distribution, porosity, particle structure, and the geological origins such as weathering, sedimentary environment. Meanwhile, the shear strength of soils is little difference according to the geological condition. But, the internal friction angle of soils sampled from the landslide area is lower than that of soils from the non landslide area. Therefore, the terrain slope with low internal friction angle is more vulnerable to the landslide.

Carbon Monoxide Dispersion in an Urban Area Simulated by a CFD Model Coupled to the WRF-Chem Model (WRF-Chem 모델과 결합된 CFD 모델을 활용한 도시 지역의 일산화탄소 확산 연구)

  • Kwon, A-Rum;Park, Soo-Jin;Kang, Geon;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.679-692
    • /
    • 2020
  • We coupled a CFD model to the WRF-Chem model (WRF-CFD model) and investigated the characteristics of flows and carbon monoxide (CO) distributions in a building-congested district. We validated the simulated results against the measured wind speeds, wind directions, and CO concentrations. The WRF-Chem model simulated the winds from southwesterly to southeasterly, overestimating the measured wind speeds. The statistical validation showed that the WRF-CFD model simulated the measured wind speeds more realistically than the WRF-Chem model. The WRF-Chem model significantly underestimated the measured CO concentrations, and the WRF-CFD model improved the CO concentration prediction. Based on the statistical validation results, the WRF-CFD model improved the performance in predicting the CO concentrations by taking complicatedly distributed buildings and mobiles sources of CO into account. At 04 KST on May 22, there was a downdraft around the AQMS, and airflow with a relatively low CO concentration was advected from the upper layer. Resultantly, the CO concentration was lower at the AQMS than the surrounding area. At 15 KST on May 22, there was an updraft around the AQMS. This resulted in a slightly higher CO concentration than the surroundings. The WRF-CFD model transported CO emitted from the mobile sources to the AQMS measurement altitude, well reproducing the measured CO concentration. At 18 KST on May 22, the WRF-CFD model simulated high CO concentrations because of high CO emission, broad updraft area, and an increase in turbulent diffusion cause by wind-shear increase near the ground.

Variation of Soil Physical Characteristics by Drainage Improvement in Poorly Drained Sloping Paddy Field (배수불량 경사지 논 토양의 배수방법에 따른 토양 물리성 변화)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.704-710
    • /
    • 2012
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. This study was conducted to evaluate soil physical characteristics by drainage improvement in poorly drained sloping paddy field. The results showed that subsurface drainage by Pipe Drainage improves the productivity of poorly drained soils by lowering the water table and improving root zone soil layer condition. In an Pipe drainage plot, soil moisture drained faster as compared to the other drainage methods. Infiltration rate showed high tendency to Piper Drainage method about $20.87mm\;hr^{-1}$ than in Open Ditch method $0.15mm\;hr^{-1}$. And Similarly soil water and degree of hardness and shear strength phase of soil profile showed a tendency to decrease. From the above results, we found that when an subsurface drainage was established with at 1m position from the lower edge paddy levee of the upper field in sloping poorly drained paddy fields Pipe Drainage was the most effective drainage system for multiple land use.

Effects of Surface Finishes on the Low Cycle Fatigue Characteristics of Sn-based Pb-free Solder Joints (금속패드가 Sn계 무연솔더의 저주기 피로저항성에 미치는 영향)

  • Lee, Kyu-O;Yoo, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2003
  • Surface finishes of PCB laminates are important in the solder joint reliability of flip chip package because the types and thicknesses of intermetallic compound(IMC), and compositions and hardness of solders are affected by them. In this study, effects of surface finishes of PCB on the low cycle fatigue resistance of Sn-based lead-free solders; Sn-3.5Ag, Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag-XBi(X=2.5, 7.5) and Sn-0.7Cu were investigated for the Cu and Au/Ni surface finish treatments. Displacement controlled room temperature lap shear fatigue tests showed that fatigue resistance of Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag and Sn-0.7Cu alloys were more or less the same each other but much better than that of Bi containing alloys regardless of the surface finish layer used. In general, solder joints on the Au/Ni finish showed better fatigue resistance than those on the Cu finish. Cross-sectional fractography revealed microcracks nucleation inside of the interfacial IMC near the solder mask edge, more frequently on the Cu than the Au/Ni surface finish. Macro cracks followed the solder/IMC interface in the Bi containing alloys, while they propagated in the solder matrix in other alloys. It was ascribed to the Bi segregation at the solder/IMC interface and the solid solution hardening effect of Bi in the $\beta-Sn$ matrix.

  • PDF

Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary (ADCP 표층유속 자료처리방법 개선을 통한 영산강 하구 표층 방류수 이류속도 산정)

  • Shin, Hyun-Jung;Kang, Kiryong;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.180-190
    • /
    • 2014
  • It has been customary to exclude top 10-20% of velocity profiles in the Acoustic Doppler Current Profiler (ADCP) measurement due to side lobe effects at the boundary. To better understand the mixing in the Yeongsan estuary, the freshwater advection speed (FAS) was recovered from highly contaminated ADCP data near the surface. The velocity profiles were measured by using ADCP at two stations in the Yeongsan estuary during August 2011: one was located in front of the Yeongsan estuarine dam and the other was deployed near Goha Island. The FAS was recovered from the ADCP data set by applying rigorous post-processing methods and compared with the sediment advection speed (SAS). The SAS was determined by the peak time difference of suspended sediment concentration between two stations in the channel, divided by the distance of two stations. The FAS and the SAS showed very similar value when the freshwater discharge was greater than $2.0{\times}10^7$ ton and the SAS was a bit greater when the freshwater discharge was smaller. Since the FAS was on average about 0.8 m/s greater than the velocity at 0.8 of water depth from the bottom, the net discharge, estimated with recovered FAS and integrated over water depth and tidal cycle, was directed seaward during the high discharge contrary to the onshore direction of the net discharge estimated with 0.8 of water depth from the bottom. Moreover, the velocity shear and Richardson number changed when the FAS was used. Thus, the importance of the true FAS is appreciated in the investigation of the surface layer stability. If currents, temperature and salinity were observed for longer time in the future, it could be possible to more accurately understand the formation and decay of stratification as well as the suspended sediment transport processes.