• Title/Summary/Keyword: shear joint

Search Result 1,003, Processing Time 0.035 seconds

Effects of Surface Finishes on the Low Cycle Fatigue Characteristics of Sn-based Pb-free Solder Joints (금속패드가 Sn계 무연솔더의 저주기 피로저항성에 미치는 영향)

  • Lee, Kyu-O;Yoo, Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.19-27
    • /
    • 2003
  • Surface finishes of PCB laminates are important in the solder joint reliability of flip chip package because the types and thicknesses of intermetallic compound(IMC), and compositions and hardness of solders are affected by them. In this study, effects of surface finishes of PCB on the low cycle fatigue resistance of Sn-based lead-free solders; Sn-3.5Ag, Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag-XBi(X=2.5, 7.5) and Sn-0.7Cu were investigated for the Cu and Au/Ni surface finish treatments. Displacement controlled room temperature lap shear fatigue tests showed that fatigue resistance of Sn-3.5Ag-XCu(X=0.75, 1.5), Sn-3.5Ag and Sn-0.7Cu alloys were more or less the same each other but much better than that of Bi containing alloys regardless of the surface finish layer used. In general, solder joints on the Au/Ni finish showed better fatigue resistance than those on the Cu finish. Cross-sectional fractography revealed microcracks nucleation inside of the interfacial IMC near the solder mask edge, more frequently on the Cu than the Au/Ni surface finish. Macro cracks followed the solder/IMC interface in the Bi containing alloys, while they propagated in the solder matrix in other alloys. It was ascribed to the Bi segregation at the solder/IMC interface and the solid solution hardening effect of Bi in the $\beta-Sn$ matrix.

  • PDF

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.